
www.manaraa.com

Graduate Theses and Dissertations Graduate College

2016

Surrogate-based design optimization of dual-rotor
wind turbines using steady RANS equations
Andrew Scott Thelen
Iowa State University

Follow this and additional works at: http://lib.dr.iastate.edu/etd

Part of the Aerospace Engineering Commons, Art and Design Commons, and the Oil, Gas, and
Energy Commons

This Thesis is brought to you for free and open access by the Graduate College at Iowa State University Digital Repository. It has been accepted for
inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information,
please contact digirep@iastate.edu.

Recommended Citation
Thelen, Andrew Scott, "Surrogate-based design optimization of dual-rotor wind turbines using steady RANS equations" (2016).
Graduate Theses and Dissertations. 15229.
http://lib.dr.iastate.edu/etd/15229

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F15229&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F15229&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F15229&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/grad?utm_source=lib.dr.iastate.edu%2Fetd%2F15229&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F15229&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/218?utm_source=lib.dr.iastate.edu%2Fetd%2F15229&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1049?utm_source=lib.dr.iastate.edu%2Fetd%2F15229&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/171?utm_source=lib.dr.iastate.edu%2Fetd%2F15229&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/171?utm_source=lib.dr.iastate.edu%2Fetd%2F15229&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/etd/15229?utm_source=lib.dr.iastate.edu%2Fetd%2F15229&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


www.manaraa.com

Surrogate-based design optimization of dual-rotor wind turbines using steady

RANS equations

by

Andrew Thelen

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Aerospace Engineering

Program of Study Committee:

Leifur Leifsson, Major Professor

Anupam Sharma

Christina Bloebaum

Iowa State University

Ames, Iowa

2016

Copyright c© Andrew Thelen, 2016. All rights reserved.



www.manaraa.com

ii

TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

NOMENCLATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

CHAPTER 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 CFD Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.3 Integration of the CFD Model and Optimization Algorithm . . . . . . . 4

1.3 Research Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

CHAPTER 2. LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Analysis of Horizontal-Axis Wind Turbines (HAWTs) . . . . . . . . . . . . . . 7

2.1.1 Computational Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Dual-Rotor Wind Turbines (DRWTs) . . . . . . . . . . . . . . . . . . . 9

2.2 Design Using Computationally Expensive Models . . . . . . . . . . . . . . . . . 13

2.2.1 Direct Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Surrogate-Based Optimization . . . . . . . . . . . . . . . . . . . . . . . 16



www.manaraa.com

iii

CHAPTER 3. ROTOR COMPUTATIONAL MODEL . . . . . . . . . . . . . . 21

3.1 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 CFD Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Grid Independence Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Numerical Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

CHAPTER 4. OPTIMIZATION METHODOLOGY . . . . . . . . . . . . . . . 27

4.1 Optimization Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Search by Parametric Sweeps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Direct Optimization Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4 Surrogate-Based Optimization with Data-Driven Models . . . . . . . . . . . . . 29

4.4.1 Kriging with Infill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4.2 Sequential Approximation Optimization . . . . . . . . . . . . . . . . . . 32

4.5 Surrogate-Based Optimization with Variable-Fidelity Models . . . . . . . . . . 34

4.5.1 Optimization Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.5.2 Multi-Point Output Space Mapping . . . . . . . . . . . . . . . . . . . . 35

4.5.3 Low-Fidelity Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

CHAPTER 5. NUMERICAL APPLICATIONS . . . . . . . . . . . . . . . . . . 37

5.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1.1 Objective Function 1: Combined Power Coefficient . . . . . . . . . . . . 37

5.1.2 Objective Function 2: Relative Power Increase . . . . . . . . . . . . . . 38

5.1.3 Design Variables and Constraints . . . . . . . . . . . . . . . . . . . . . . 39

5.1.4 Model Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 Case I: Optimizing R2 and λ2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2.1 Maximization of Combined Power Coefficient (Case I) . . . . . . . . . . 43

5.2.2 Maximization of Relative Power Gain (Case I) . . . . . . . . . . . . . . 49

5.3 Case II: Optimizing R2, λ2, and ∆x . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3.1 Maximization of Combined Power Coefficient (Case II) . . . . . . . . . . 52

5.3.2 Maximization of Relative Power Gain (Case II) . . . . . . . . . . . . . . 55



www.manaraa.com

iv

5.4 Case III: Optimizing R2, λ2, and ∆x, as well as the Blade Chord Distribution . 57

5.4.1 Maximization of Relative Power Gain (Case III) . . . . . . . . . . . . . 59

5.5 Additional Investigations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.5.1 Optimal Designs for a Range of R2 . . . . . . . . . . . . . . . . . . . . . 65

5.5.2 Optimal Designs for a Range of ∆x . . . . . . . . . . . . . . . . . . . . 67

5.5.3 Coarse Model Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.6 Comparison of Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

CHAPTER 6. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

APPENDIX A. SECONDARY INVESTIGATIONS . . . . . . . . . . . . . . . 77

A.1 Parametric Sweep of the Optimized Rotor . . . . . . . . . . . . . . . . . . . . . 77

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79



www.manaraa.com

v

LIST OF TABLES

5.1 Design variables bounds and constraints used for each case. . . . . . . 39

5.2 Combined power coefficient, number of cells, and run time using the

meshes HF, MF, LF 1, and LF 2. CP is the power coefficient for the

grid study design point, Ncells is the number of mesh cells, and t is the

simulation run time using 16 processors. . . . . . . . . . . . . . . . . . 42

5.3 Initial points used for pattern search for Case I using objective function

1 (Sec. 5.1.1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.4 Summary of results for Case I using objective function 1 (Sec. 5.1.1). . 49

5.5 Summary of results for Case I using objective function 2 (Sec. 5.1.2)

(stopping criteria:
∣∣H(i) −H(i−1)∣∣ < 0.01 or Nf > 40). Nc and Nf are

the number of low- and high-fidelity function calls, while Nfeq is the

number of equivalent high-fidelity function calls (in terms of computa-

tion time). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.6 Summary of results for Case II using objective function 2 (Sec. 5.1.2). 54

5.7 Summary of results for Case II using objective function 2 (Sec. 5.1.2)

(stopping criteria:
∣∣H(i) −H(i−1)∣∣ < 0.01 or Nf > 50). Nc and Nf are

the number of low- and high-fidelity function calls, while Nfeq is the

number of equivalent high-fidelity function calls (in terms of computa-

tion time). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.8 Summary of results for Case III (stopping criterion:
∣∣H(i) −H(i−1)∣∣ <

0.001): final attributes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 61



www.manaraa.com

vi

5.9 Summary of results for Case III (stopping criterion:
∣∣H(i) −H(i−1)∣∣ <

0.001): final design variables. Here, x1 = λ2, x2 = R2, and x3 = ∆x,

while xi(i = 4, ..., 11) = cj(j = 1, ..., 8) are the chord design variables. . 61

5.10 Summary of results for Case I using objective function 2 (Sec. 5.1.2).

In this case, pattern search with low-fidelity models LF 1 and LF 2 are

utilized. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.11 Summary of results for Case II using objective function 2 (Sec. 5.1.2).

In this case, pattern search with low-fidelity models LF 1 and LF 2 are

utilized. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.12 Summary of results for Case III using objective function 2 (Sec. 5.1.2).

In this case, pattern search with low-fidelity models LF 1 and LF 2 are

utilized. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.13 Advantages and disadvantages of the optimization techniques. . . . . . 73



www.manaraa.com

vii

LIST OF FIGURES

1.1 A conceptual diagram of the DRWT configuration. Dm and Ds are main

and secondary rotor diameters while h is the height of the supporting

tower. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Effect of number of rotors on theoretical maximum attainable power

coefficient. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Workflow of direct optimization. . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Workflow of a surrogate-based optimization (SBO) algorithm. . . . . . 17

2.4 Common sampling plans for use in data-driven SBO methods [55]. . . 18

2.5 LHS sampling plan optimized using an evolutionary algorithm [27]. . . 19

3.1 Schematic of the solution domain used by the CFD model. R1 and R2

are the radii of the primary and secondary rotors of a DRWT, and ∆x

is the axial separation between the rotors. . . . . . . . . . . . . . . . . 22

3.2 Example mesh of the DRWT. . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Grid independence study results: the effect of number of cells on DRWT

power coefficient (left), an approximate error of DRWT power coefficient

(center) where CP,extrapolated = 0.54257 and N is the number of cells

in the stream-wise direction, and simulation run time using a single

processor (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Example flow solutions showing gauge pressure contours for single and

dual rotors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25



www.manaraa.com

viii

3.5 Geometry and verification results for the Tellus T-1995 turbine: (a)

blade chord and twist distributions, (b) comparison between data and

predictions, and radial variations of (c) torque force coefficient, Cτ and

(d) thrust force coefficient, CT . . . . . . . . . . . . . . . . . . . . . . . 26

4.1 A conceptual diagram of pattern-search method using a rectangular

grid [18, 19]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 SAO algorithm flow. For iteration i, x(i) is the current design point

while d = [d1 d2]
T describes the size of the local search space in each

dimension of parameter space. . . . . . . . . . . . . . . . . . . . . . . . 33

5.1 Results of the secondary mesh independence study: power coefficients

(left), simulation run time using three processors (right). MF is the

medium-fidelity mesh used in first approach. HF is the high-fidelity

model used in the second approach. LF 1 and LF 2 are the low-fidelity

models used by multi-point OSM in the second approach. . . . . . . . 41

5.2 Performance and flow field of the baseline design: grid dependence of the

baseline power coefficient value for each mesh (left), pressure contours

and streamlines (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3 Parametric sweep result for Case I: contours of the combined power

coefficient of both rotors. . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.4 Pattern search trial 1: sampled designs with power contours as a backdrop. 45

5.5 Pattern search trial 2: sampled designs with power contours as a backdrop. 45

5.6 Pattern search trial 3: sampled designs with power contours as a backdrop. 46

5.7 Contours of CP and the sampled design points using SAO for Case I. . 46

5.8 Convergence history of the SAO method for Case I using objective func-

tion 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.9 Kriging with updates for Case I using objective function 1 (Sec. 5.1.1):

contours of CP and the sampled points. . . . . . . . . . . . . . . . . . . 48



www.manaraa.com

ix

5.10 Final kriging models for Case I using objective function 1 (Sec. 5.1.1):

contours of the kriging-approximated CP and the sampled points. . . . 48

5.11 Convergence histories for Case I using objective function 2 (Sec. 5.1.2),

where the solutions for both models were computed using 16 processors.

Nfeq is the equivalent high-fidelity function calls in terms of computation

time. Norm of the argument is normalized by the initial magnitude, and

each of its dimensional components are normalized by bounds size. . . 50

5.12 Pressure contours and streamlines of the initial and optimized designs

for Case I using objective function 2 (Sec. 5.1.2). . . . . . . . . . . . . 50

5.13 Parametric sweep results for Case II using objective function 1 (Sec. 5.1.1):

contours of CP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.14 Convergence of pattern search for Case II using objective function 1

(Sec. 5.1.1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.15 Convergence of SAO for Case II using objective function 1 (Sec. 5.1.1). 53

5.16 Convergence of kriging for Case II using objective function 1 (Sec. 5.1.1). 54

5.17 Convergence histories for Case II using objective function 2 (Sec. 5.1.2). 55

5.18 Pressure contours and streamlines of the initial and optimized designs

for Case II using objective function 2 (Sec. 5.1.2). . . . . . . . . . . . . 55

5.19 Baseline blade chord and twist distributions of the secondary rotor. The

red curves are the initial distributions while b-spline curves and control

points are shown in black. The chord distribution will be optimized,

whereas the twist distribution will be kept fixed. The control points of

the chord distribution are allowed to move in the vertical direction, i.e.,

their radial location is held fixed during the optimization. . . . . . . . 58

5.20 Case III convergence histories using 16 processors for all models. . . . 59

5.21 B-spline curves and control points of baseline and optimized chord dis-

tributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.22 Pressure contours and streamlines of the initial and final designs for

Case III. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62



www.manaraa.com

x

5.23 Results of design space sampling between the OSM and pattern search

optima. Note that α = 0 and α = 1 correspond to OSM and pattern

search optima, respectively. . . . . . . . . . . . . . . . . . . . . . . . . 63

5.24 Nonlinear constraint value between the OSM and pattern search optima. 64

5.25 Final objective function for fixed radii. . . . . . . . . . . . . . . . . . . 66

5.26 Final design variable values (excluding chord control points) for the

fixed R2 investigation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.27 Final objective function for fixed rotor separation. . . . . . . . . . . . . 67

5.28 Final design variable values (excluding chord control points) for the

fixed ∆x investigation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.29 Case I optimization paths using OSM (HF & LF 1) and pattern search

(LF 1) Note that the diamonds mark the optima found by the two

methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.30 Baseline chord distribution versus optimized distributions using of high-,

low-, and multi-fidelity PS and OSM. . . . . . . . . . . . . . . . . . . . 71

A.1 Power contours of the initial rotor geometry for ∆x = 0.5. . . . . . . . 78

A.2 Power contours of the optimized rotor geometry for ∆x = 0.5. . . . . . 78



www.manaraa.com

xi

ACKNOWLEDGEMENTS

I would like to thank the many people who helped me conduct this research and write this

thesis. First and foremost, the knowledge, expertise, and words of encouragement of Dr. Leifur

Leifsson were instrumental in completing this work. I would also like to thank my committee

members, Dr. Anupam Sharma and Dr. Christina Bloebaum, for their support and helpful

insight. Dr. Sharma, I believe, deserves special recognition for lending me his CFD model

which serves as the basis of this thesis. I would also like to thank my research group members

Jie Ren, Anand Amrit, and Xiaosong Du, whose suggestions were at times instrumental in

completing this work. I would also like to thank many other graduate students and faculty

who helped me along the way. Finally, I would like to thank my parents and siblings for their

unending support.



www.manaraa.com

xii

ABSTRACT

Dual-rotor wind turbines (DRWT) may offer better energy efficiency over their single-rotor

counterparts in isolated and in windfarm operation. The design and analysis of DRWT re-

quires, among other, the use of computational fluid dynamics models. Depending on their

formulation, these models can be computationally expensive. Numerous simulations are typi-

cally required during the design process, which may render the overall computational cost to

be prohibitive. This thesis investigates and compares several optimization techniques for the

design of DRWTs. In particular, the DRWT fluid flow is solved using the Reynolds-Averaged

Navier-Stokes equations with a two-equation turbulence model on an axisymmetric mesh, while

three design approaches are considered: (1) the traditional parametric sweep where the design

variables are varied and the responses examined, (2) direct optimization with a derivative-free

algorithm, and (3) surrogate-based optimization (SBO) using both data-driven and physics-

based surrogates. The approaches are applied to test cases involving two, three, and 11 design

variables. Two final cases utilize the physics-based SBO to carry out a parametric study of

two of the design variables. The results show that the same optimized designs are obtained

with all the approaches. However, going from the two-parameter case to the three-parameter

case, the effort of setting up, running, and analyzing the results is significantly higher with

the parametric sweep approach. The optimization techniques are more efficient because they

require no assumptions of sampling discretization, and are much more likely to find the best

design. In addition, they deliver the results with lower computational cost in comparison with

the parametric sweep approach, while the SBO algorithms often outperform the direct approach

in terms of computational expense.
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NOMENCLATURE

CP = Power coefficient of single rotor turbine or combined power coefficient for DRWT [-]

CPm = Power coefficient of main rotor [-]

CPs = Power coefficient of secondary rotor [-]

λ1 = Main rotor tip speed ratio [-]

λ2 = Secondary rotor tip speed ratio [-]

R1 = Main rotor tip radius [m]

R2 = Secondary rotor tip radius [m]

∆x = Axial separation between the main and secondary rotors [m]

x = Design variable vector

f(x) = Model output vector (fine model)

c(x) = Model output vector (coarse model)

H = Objective function value (function of f(x) or c(x))

τ = Torque [Nm]

Ω = Rotational rate of rotor [rad/s]

ρ∞ = Free-stream density [kg/m3]

v∞ = Free-stream velocity [m/s]
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CHAPTER 1. INTRODUCTION

1.1 Motivation

Modern horizontal-axis wind turbines fall short of the theoretical Betz limit for maximum

obtainable efficiency because of multiple reasons such as wake loss due to upwind turbines as

well as root loss [1, 2]. The root region of a turbine blade has to withstand the gravitational,

rotational, and aerodynamic loads, which are substantial due to the large size of the rotor.

This structural requirement invariably leads to a root cross-section with high t/c (thickness-to-

chord) ratio; such airfoils have poor aerodynamic properties (e.g. lift-to-drag ratio is relatively

small). In an effort to increase the energy capture of such wind turbine configurations, the

integration of a secondary rotor into the design has been investigated in a number of studies,

with many of them yielding promising results [1, 3, 4, 5, 6, 7, 8, 9, 10, 11]. A sample of such a

design is provided in Fig. 1.1.

There are a spectrum of numerical tools of varying computational cost and physics fidelity

that can be used to model a dual-rotor wind turbine (DRWT) design. Large eddy simulation

(LES) [12] and the Reynolds-averaged Navier-Stokes (RANS) [13] simulations have proven to be

quite useful for wind turbine applications [1, 2, 6, 8, 14, 15, 16]. With these approaches available,

it is important to consider the fidelity necessary, as well as the associated overall computational

cost, required to search for an optimized DRWT design. For example, a high-fidelity partial

differential equation (PDE) simulation, such as LES, would not be an efficient approach in the

preliminary design stage, as sampling throughout the entire design space would be very costly.

Similarly, a faster, but lower fidelity model, which may neglect important physics, would not

be an effective tool in determining the precise conditions for an optimized DRWT design.
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Figure 1.1: A conceptual diagram of the DRWT configuration. Dm and Ds are main and
secondary rotor diameters while h is the height of the supporting tower.

Previous studies demonstrate that an actuator disk model, developed using the simpleFoam

RANS solver in OpenFoam [17], can be used to model wind turbine performance with reasonable

accuracy [1, 2]. Moreover, because certain assumptions allow it to be executed relatively

fast (i.e., the unresolved rotor blade surfaces which would introduce boundary layer flow, the

steady state assumption, and the lack of hub or tower effects), this type of model can be

used to efficiently capture the dominant trends in the DRWT design space. These trends

can subsequently be used to dramatically reduce the size of the design space when planning

high-fidelity computational fluid dynamics (CFD) simulations or experimental analyses.

While the actuator disk model is faster than other available approaches (such as geometry-

resolved RANS [16], or actuator line/disk model LES [1, 8]), the computational resources

required to find a global optimum in this design space is nevertheless significant. Because each
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design iteration may require multiple model evaluations, the overall computational cost can be

prohibitive. For this reason, the work presented in this thesis focuses on developing an efficient

approach for optimizing the DRWT using minimal computational resources.

1.2 Challenges

There are several challenges to overcome when conducting a CFD-based design optimization

process. By in large, these challenges can be categorized based on three aspects of the process:

(1) the CFD model, (2) the optimization process, (3) and the integration of the CFD model

and optimization algorithm.

1.2.1 CFD Model

Depending on their formulation, CFD models can be computationally expensive. Evaluation

of a design for one set of flow conditions may require hours, days, or even weeks of computing

time. In combination with several other common issues, this high cost makes a CFD-based

design optimization process time-intensive and challenging. Moreover, tuning the model for

robustness introduces additional challenges to the process.

Closely tied with model cost is convergence of the flow solver. Often, the model must be

numerically tuned to more quickly evaluate designs in the design space using the specific grid

and fluid flow conditions. For example, the selection of numerical schemes and adjustments of

parameters (e.g. CFL number or multi-grid parameters) can significantly affect the amount of

time required to evaluate the model. While this task can be challenging on its own, flow solver

divergence can sometimes occur later in the optimization process. It is not uncommon for the

CFD model to be tuned well for typical designs, while the flow solver diverges for unusual

designs within the design space. Thus, tuning the model to reduce the cost of the model can

often present unforeseen obstacles later, when the optimization algorithm attempts to evaluate

a specific design. Improving the convergence rate and therefore cost of the CFD model thus

introduces a unique set of challenges to the design optimization process.
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1.2.2 Optimization

Invariably, optimization of a design configuration requires multiple model evaluations.

Moreover, as dimensionality increases, the number of evaluations required to reach the op-

timum grows quickly. This is especially true for conventional optimization techniques, which

typically require a large number of iterations. Because of this need for numerous evaluations,

combined with the high computational cost of each model evaluation, an efficient optimization

algorithm is needed. Implementation of such algorithms is not always straightforward, however.

Applying the algorithm can be very time-intensive for two main reasons. Firstly, CFD-based

design spaces with large numbers of design variables are often complex and highly nonlinear, and

may even have multiple minima. Such scenarios may not be handled well by the optimization

algorithm, leading to slow convergence or getting trapped in a local minimum. Secondly, many

methods can be implemented in multiple ways, for example by changing one small aspect of

the method or by adjusting a fixed parameter. Due to these obstacles, the optimization process

may need to be repeated multiple times in order to obtain the best result in terms of design

quality or computational expense.

1.2.3 Integration of the CFD Model and Optimization Algorithm

Selecting the computational discretization, in other words the mesh, can often be the most

time-consuming process in the CFD-based optimization process. This task tends to have a sig-

nificant effect on two aspects of model output: grid dependence and numerical noise. Through

these mesh-based phenomena, optimization using a CFD model can introduce unique challenges

that are irrelevant when developing the CFD model or optimization alone.

In order to precisely resolve the flow in a region with nonzero flow gradients, each cell needs

to be infinitesimally small. This is impossible because the mesh cell count cannot be infinite, so

the flow field must to some extent be approximated. This invariably leads to a finite amount of

discretization error in the CFD model, which is often evident in the model output. A common

term used to describe this discretization error is grid dependence (which is named as such

because the objective function is dependent on not only the governing equations, but the mesh
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as well). Typically, the effect of this inherent error must be minimized before beginning a CFD-

based optimization task. The basic approach to doing this is to carry out a grid dependence

study; for such an analysis, the mesh is refined until the estimated magnitude of discretization

error is adequately small. Two consequences may result from not doing so. Most commonly,

the magnitude of the model output will differ from that of the theoretical mesh with infinite cell

count (which can be estimated by extrapolation). Perhaps more importantly, grid dependence

also tends to change where the optima are located in the design space. Therefore, although

it can be very time-consuming, selecting a mesh with adequately small grid dependence is an

important step in order to obtain meaningful optimization results. Unfortunately, however,

a mesh with minimal discretization error also means a more computationally expensive CFD

model.

Numerical noise is closely tied to grid dependence, in that it is also caused by discretization

error. However, this component of inherent model error refers specifically to the seemingly

random oscillations of grid dependence in a minuscule region of the design space. This effect is

most significant when using unstructured meshes, particularly those with relatively few cells.

For such a mesh, insignificant changes in a design can lead to significant changes in model

response (e.g. computed lift or drag) which resemble random noise when generated for a small

range of designs. This effect is due to the disorganization of the cells. Two meshes for nearly

the same design point typically differ in cell locations and orientations, causing them to have

two significantly different values of discretization error. This numerical noise in the model

output can be challenging to overcome; often, some methods are completely unable to handle

the noisy design space. For example, gradient-based methods that compute gradients by finite

difference method often converge immediately on a noise-induced minimum. Fortunately, the

use of structured mesh topologies largely minimizes this effect, which is because the cells remain

organized in a similar way between adjacent design points.

1.3 Research Contribution

The contribution of this work is to investigate efficient strategies for optimizing a dual-rotor

wind turbine using CFD simulations. In particular, a multi-fidelity approach is developed for
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this specific optimization task, while several additional methods are implemented for compari-

son. The CFD model used, which was developed by Professor Sharma and his research group

at Iowa State University, is relatively cheap but captures the dominant trends of a DRWT

design space. Throughout this work, the following optimization approaches will be described

and demonstrated:

• Parametric sweep

• Pattern search [18, 19]

• Sequential approximation optimization (SAO) [20, 21, 22, 23, 24]

• Kriging with infill [25, 26, 27]

• Output space mapping (OSM) [28]

1.4 Outline

This work is organized as follows. Provided in Chapter 2 is a review of other works on CFD

rotor modeling, dual-rotor wind turbines, and optimization using expensive models. In Chapter

3 is a description of the computational model where the specifics of the governing equations,

computational fluid dynamics (CFD) model, grid independence study, and numerical validation

are given. Then, in Chapter 4 the optimization methodologies are described, including the

parametric sweep, direct optimization, and SBO. In Chapter 5, the optimization approaches are

applied to several test cases of DRWT, which vary in computational expense and complexity.

Conclusions from the investigations are presented in Chapter 6. Supplementary results are

provided in Appendix A.
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CHAPTER 2. LITERATURE REVIEW

This chapter provides background information on DRWT optimization. Among these top-

ics, two distinct areas of research are relevant. Firstly, wind turbine analysis is discussed,

where two aspects are emphasized: (1) general information on popular wind turbine modeling

techniques, and (2) results from DRWT analyses. Secondly, optimization approaches for use

on computationally expensive functions are also discussed; here, popular approaches will be

described in general terms.

2.1 Analysis of Horizontal-Axis Wind Turbines (HAWTs)

2.1.1 Computational Modeling

In an atmospheric boundary layer (ABL) flow [29, 15, 8], the rotor blades of a HAWT

rotate around a horizontal axis of rotation. The resulting pressure distributions on the blade

surfaces yield a net torque around this axis of rotation. As this process continues over time,

the kinetic energy of the fluid is converted into mechanical energy [30]. This torque is then

transferred through the drivetrain and gearbox into the system’s electric generator [31], which

converts the mechanical energy into electric energy. The fluid dynamics of such a system can

be modeled computationally in many ways; in general, these approaches vary in accuracy,

complexity, and computational cost. Among these methods, the two main differences are the

governing equations and whether the surface geometry is resolved.

Many sets of governing equations have been used to model HAWTs. Perhaps the most

common are the Reynolds-averaged Navier-Stokes (RANS) equations [16, 6, 1, 2, 32] or Large

Eddy Simulation (LES) [15, 14, 8]; others instead use Detached Eddy Simulation (DES) [33] or

Direct Numerical Simulation (DNS) [34]. Other lower fidelity but faster models even use the
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Euler [35] or potential flow equations, for example through the use of the vortex lattice method

(VLM) [9]. In addition, many of these models can also vary depending on whether the equations

are steady [16, 1, 2, 35] or time-dependent [6, 8, 35, 32]. Among these two alternatives, the

use of steady equations tends to be faster and less complex to implement. The disadvantage

of this is that the flow structures which are present in realistic HAWT flow may be ignored

due to this assumption. For example, when modeling a DRWT, the wake flow of an upstream

rotor may periodically affect the performance of the downstream rotor. Consequences of this

phenomenon may be completely ignored when steady equations are used.

Regardless of the governing equations, some models resolve the rotor blade geometry [16, 36]

while others do not [35, 8, 6, 1, 9, 32]. When the geometry is resolved, the blade surfaces are

treated as no-penetration, no-slip surfaces. In such a flow field, there is a boundary layer along

rotor blade surfaces. A relatively fine mesh must be used to accurately resolve this boundary

layer flow, making this approach costly. When the geometry is not resolved, rotor blade surfaces

are discarded from the domain entirely. Instead, the effects of the rotors are modeled by adding

or subtracting momentum to the fluid volume elements in the locations of the blades. This is

typically done through the use of the actuator line or disk approaches. In general, an actuator

line [30, 6, 32] models the rotor’s momentum extraction as a section of a disk while an actuator

disk does the same for the entire plane of rotation (i.e. the volume swept by the rotors) [30, 37].

These approaches are often used with blade element momentum (BEM) theory (also known as

strip theory), which determines how much momentum to add or subtract from the flow based

on local flow velocity and direction. Regardless, because boundary layer flow is not present in

these models, using an unresolved geometry is faster but potentially less accurate than modeling

the rotor surfaces directly.

Among these methods, there is always a trade-off between accuracy and computational cost,

while complexity is closely related to cost. For example if cost and complexity were the same for

all models, then the use of time-dependent DNS with resolved geometry would always be used

(if such models would be available). However, in reality this would lead to a very expensive

model. At the same time, alternative methods often yield very similar results, so more complex

methods are arguably unnecessary [30]. Moreover, when modeling the interaction of multiple
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rotors, the complexity and mesh requirements are even more extensive. This is especially

true when the rotors are resolved and rotate in opposite directions, which would necessitate

overlapping grids or a moving interface between separate subgrids [6, 36, 38]. As a result, the

cheaper and less complex methods tend to be more popular when analyzing DRWTs.

2.1.2 Dual-Rotor Wind Turbines (DRWTs)

Many previous works have investigated the aerodynamic performance of DRWTs. Some of

these analyses have utilized wind tunnel or field data [3, 4, 7, 10, 11, 5], while others have used

computational models [6, 1, 8, 9]. Among these works, the designs being investigated vary by

size (i.e. power rating) and whether the rotors are counter-rotating (CRWT) or co-rotating.

Overall, the conclusion tends to be the same: DRWTs are in many cases capable of capturing

more energy than single-rotor wind turbines (SRWTs). When assessing these works, then, the

more valuable considerations are (a) the difference in performance between the DRWT and

an equivalent SRWT, and (b) which parameter values lead to the highest overall performance.

While parameters tend to vary between studies, the main metric used to assess performance is

almost always the power coefficient. This non-dimensional performance metric can theoretically

vary between 0 and 1, and describes the power extraction as a fraction of the total flow energy.

In 1985, work by Newman [3] investigated the use of one-dimensional actuator disks for

applications to wind turbine analysis. In particular, the author provides a detailed analytical

background on the topic and shows that when fluid rotation is neglected, the maximum at-

tainable power coefficient (CP ) for a series of n disks is [8n(n+ 1)]/[3(2n+ 1)2]. For one rotor

this is equivalent to the well-known Betz limit of 16/27, or 59.3%. When a second rotor is

introduced, the maximum value is 16/25 (or 64%). Thus, in theory, the best possible DRWT

can therefore attain 8% more power than the best possible SRWT. As the number of rotors is

increased, however, the improvement per rotor diminishes to an infinitesimal value. For such a

case where n approaches a very large value, the maximum CP approaches 2/3 or 66.67%. This

corresponds to a 13% increase in maximum attainable power when compared to a SRWT. This

important concept is illustrated in Fig. 2.1.
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Figure 2.1: Effect of number of rotors on theoretical maximum attainable power coefficient.

In 2002, Appa Technology Initiatives [4] built a prototype CRWT with two 2-bladed rotors

with an overall power rating of 6 kW. After 4 months of operation, this study showed that the

DRWT could achieve an increase of 30% more power capture than an equivalent SRWT in the

same flow. It was also noted that no buffeting of the blades occurred, and that the bending

stresses of the tower were reduced for the CRWT. Finally, the authors provide suggestions on

how existing SRWTs could be retrofitted to include the secondary rotor.

In 2005, work by Jung et al. [5] investigated the performance of a 30 kW CRWT with two

3-bladed rotors. This was done using a combination of quasi-steady strip theory and wind

tunnel wake measurements. In particular, the authors study the effect of secondary rotor

size and axial separation on power increase relative to an equivalent SRWT. Using an axial

separation of zero, the results show that the relative increase in power reaches a maximum

of 20% when the secondary rotor is approximately one half the size of the main rotor. It is

worth noting, however, that the DRWT system is unique because the main rotor is lengthened

using an extension bar. The authors then fix the size of the secondary rotor to this optimal

length, and vary the interval length between rotors. An additional increase of 9% (with respect
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to the DRWT with zero separation) is observed when rotor separation is one half the main

rotor’s radius. However, wind tunnel data was not available for greater separation values, so

the optimal separation would presumably continue to increase beyond this value of 0.5. Finally,

the results were tested using CRWT field measurements. This showed an overall power increase

of approximately 21% compared to an equivalent SRWT, while the maximum observed power

coefficient was approximately CP = 0.5.

In 2007, work by Shen et al. [6] investigated the performance of a CRWT with two three-

bladed 500 kW rotors of equal size. This was done through the use of an incompressible

time-dependent RANS solver in conjunction with the actuator line technique. BEM theory,

along with tabulated airfoil data, is used to compute the amount of body force to apply on

the fluid volume elements. In this work, the authors focus on the effect of rotational speeds

(at constant inflow velocity) and axial separation between rotors on power extraction. The

results show that at high rotational rates, the combined power coefficient can reach as high as

0.55. They also find that rotor separation has very little effect on performance, although there

are large fluctuations of power coefficient (in time) when this value is set at 10% of the rotor

radius. Finally, they utilize wind speed distribution data (specifically, probability curve of wind

speeds) to estimate the annual power improvement of the DRWT compared to an equivalent

SRWT. This yields an improvement of 43.5%, and they note that lower wind speeds would see

a further improvement.

In 2011, Habash et al. [7] investigated the performance of a small CRWT (roughly 0.1-100

kW) with two identical rotors. To do this, they performed experimental testing in a boundary

layer wind tunnel. In particular, they studied the total power extraction as a function of axial

rotor separation, Reynolds number and wind speed. The results show that rotor separation does

not affect performance significantly, although power capture is slightly higher for a distance of

approximately one rotor diameter. Both Reynolds and wind speed led to exponential increases

in power extraction as these values are increased. In addition, the turbulent intensity of the

flow was varied. This was done through the use of different screens upstream of the DRWT,

and showed that this flow property can affect power extraction by as much as 12%. Overall,

the DRWT was observed to extract up to 20-40% more power than an equivalent SRWT.
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Recent work by Sharma et al. [9, 1, 8] has specifically investigated the potential mitigation

of root loss by positioning a smaller rotor in front of the main rotor. This collection of CFD-

based work suggest that the loss of energy capture associated with the root region of a single

turbine can be reduced significantly through this approach. For example, in [1], a smaller,

upstream rotor (which was aerodynamically tailored based on an inverse design approach) is

added to an existing 5 MW SRWT design. The CFD model utilizes the steady incompressible

RANS equations in conjunction with the actuator disk technique and BEM theory. The power

coefficient is computed as the axial separation between rotors, as well as the tip speed ratio

and radius of the secondary rotor, are varied. The authors found that when the main rotor

rotates at its optimal tip speed ratio, a maximum power increase of 5-7% is attainable. This

corresponds to a secondary rotor tip speed ratio and radius of 6 and 0.25, while the rotor

separation is approximately 0.2. A similar design was also tested using the LES technique

(with the actuator line approach), which yielded a power increase of 4.6%. Investigations in

[8] extend the work in [1] using the same LES CFD model. In particular, the power capture,

structural loads, and downstream wake mixing are studied while the inflow velocity distribution

and turbulent intensity are varied. The results showed that power increase can vary from 4.9%

to 10.8% depending on inflow velocity distribution, with uniform velocity yielding the minimum

value. In addition, the root bending moments of the DRWT are reduced slightly compared to

a SRWT. The DRWT was also shown to enhance wake mixing downstream of the rotors, with

this effect increasing as turbulent intensity is increased. This important result suggests that

wake losses in a wind farm would be reduced, leading to further improvements in power capture.

Subsequent investigations done by Hu et al. [10, 11] have further confirmed that in a wind

tunnel setting, these dual-rotor design configurations can in fact increase the power capture of

a turbine operating in isolation. For example, in [11] the authors investigate the performance

of DRWTs which use two identical 3-bladed rotors spaced at one half the rotor radius. In

particular, this work utilizes a large-scale boundary layer wind tunnel in order to investigate

the performance of counter- and co-rotating DRWTs in comparison to an equivalent SRWT.

In this work, they observe maximum power gains of 60% and 48% for the counter- and co-

rotating DRWTs, respectively. The authors also find that the DRWT systems were subjected
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to significantly higher bending moments and axial thrust loading. In addition, [10] specifically

investigates the wake losses of a DRWT using the same wind tunnel setup. The secondary,

upstream rotor is approximately half the size of the main rotor while axial separation between

the two rotors is set to a small value. The work focuses specifically the performance of a SRWT

downstream of both a SRWT and a DRWT. The position of the downstream SRWT is varied

in the streamwise direction and the resulting power is measured. The results from this work

shows that the SRWT captures up to 6% more power (at a distance of 6 rotor diameters) when

positioned behind a DRWT as opposed to a SRWT. This is due to the faster recovery of wake

flows behind DRWTs when compared to SRWTs. As a result, while DRWTs may capture more

power in isolation, further improvements may be seen in a wind farm setting.

2.2 Design Using Computationally Expensive Models

There are numerous types of optimization methods capable of optimizing a computationally

expensive, computer-based simulation. These methods all belong to one of two categories: (1)

direct methods, which include both heuristic and deterministic methods, and (2) surrogate-

based methods, which include data-driven and physics-based methods. The following sections

will provide an overview of these two classes of optimization methods and their uses in aero-

dynamic shape optimization (ASO).

2.2.1 Direct Optimization

In order to iteratively converge on an optimum in a design space, direct optimization meth-

ods utilize the expensive simulation directly rather than indirectly after intermediate processes.

The workflow of such a process is illustrated in Fig. 2.2. Methods of this type can differ de-

pending on which information is available from the objective function. For example, 0th-order

methods (otherwise known as derivative-free methods), do not utilize derivative information

of the function. When using first-order methods, on the other hand, the algorithm is reliant

on derivative information of the function. Likewise, second-order methods require the Hessian

matrix of the function. In general, the higher the order of optimization method, the more

efficient it is in terms of number of function evaluations.
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Figure 2.2: Workflow of direct optimization.

2.2.1.1 0th-Order Methods

0th-order direct methods can be categorized as being either heuristic (i.e., dependent on

probability in some way) or deterministic (i.e., can be repeated to reach the same solution

every time). In general, the deterministic type of direct method is much more popular when

optimizing an expensive function. This is because heuristic methods typically require many

more function calls; they are instead better suited for global searches of cheap, multi-modal

design spaces. For example, Martins et al. [39] compared two heuristic methods to several

deterministic methods. In particular, the authors solved a wing optimization test case using

two of these methods, one genetic algorithm (NSGA2 [40] via pyOpt [41]) and one based on

particle swarm optimization (ALPSO [42] via pyOpt [41]). Using eight design variables, all of

the methods reached approximately the same solution, with the heuristic methods requiring

roughly 1,000 times more function evaluations.

Deterministic 0th-order methods are not among the fastest, but are often needed for ASO

when gradient information of the design space is not available. Typically, these methods utilize

the estimated gradients in some way. For example, pattern search [18, 19, 43] is a fairly robust
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method which utilizes a grid search to estimate which direction to move in. Other methods

compute gradients in a less orderly fashion, often using the finite difference method on a very

small scale. When applied to ASO, these methods are often ineffective due to the numerical

noise caused by the mesh in the simulation.

2.2.1.2 1st- and 2nd-Order Methods

Since the advent of adjoint sensitivity for aerodynamic applications, first-order direct meth-

ods have become some of the most popular choices for CFD-based design problems. This valu-

able technique, which was first applied to aerodynamic design in 1988 by Antony Jameson [44],

makes gradient information of a CFD-based objective function available to the optimizer with-

out incurring excessive additional computational cost. To obtain this first-order information of

the objective function, an adjoint-solver solution is required, which increases the cost of each

function evaluation. In general, the cost of one adjoint solution is comparable to the cost of

the flow solution. The adjoint solution is obtained for each cost function or constraint value.

Thus, because this cost is independent of the number of design variables, this use of adjoint

sensitivity can significantly accelerate the design optimization process. As a result, the most

popular direct methods in modern ASO tend to be gradient-based through the use of adjoint

information.

Some of the most popular direct methods for ASO are quasi-Newton algorithms. This type

of method approximates second-order information of the function using previously obtained

0th- and first-order information. The exact lower-order information along with the approxi-

mated Hessian matrix is then applied in a similar manner as Newton’s method (with the main

difference being constraint handling, in which case Lagrangians are involved). For example,

Broyden-Fletcher-Goldfarb-Shanno (BFGS) has proven to be quite popular for ASO applica-

tions [45, 46]. In recent years, algorithms based on sequential quadratic programming (SQP)

have become very popular as well. This is due especially to the availability of these methods;

MATLAB, for example, contains a built-in function fmincon which can utilize several quasi-

Newton methods, including BFGS and SQP. In addition, many sophisticated optimization

codes have in recent decades become widely available. For example, SNOPT [47] is currently
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widely used for aerodynamic shape optimization [48, 49, 50], and is just one of many algorithms

provided pyOpt [41], a widely available framework for nonlinear constrained optimization.

There are also second-order ASO methods which use the exact Hessian rather than estimat-

ing it. In 2001, Taylor et al. [51] introduced an approach that uses the automatic differentiation

(AD) technique in conjunction with adjoint sensitivities to compute the exact Hessian matrix.

Then in 2010, Rumpfkeil et al. [46] describe a generalized way to carry out this procedure. Two

test cases (ASO of an airfoil in inviscid flow) are solved, one with two variables and another

with six. The method is utilized by KNITRO [52], another easily available optimization code

which is based on Newton’s method. Comparisons to quasi-Newton approaches are made, with

the exact Hessian method yielding some of the most efficient outcomes. Overall, these exact-

Hessian approaches have shown promising results; however, they may not be among the most

popular, which could be due to their complexity and lesser availability.

2.2.2 Surrogate-Based Optimization

Surrogate-based optimization (SBO) methods [27, 25, 26, 43] are those which utilize a surro-

gate model of the objective function. In general, the surrogate model is used in an intermediate

step between evaluation of the objective function and selection of the next design to sample.

This process is illustrated in Fig. 2.3. Among these methods, there are two general types:

data-driven, also called approximation-based, and physics-based methods.

2.2.2.1 Data-Driven Methods

The key difference between data-driven and physics-based surrogate models is that the

former utilizes an analytical approximation of the design space. For this reason, data-driven

models are sometimes referred to as being approximation-based [25, 26, 43]. These surrogate

models can be local or global, and are found using some type of sampling plan. Once the

model is formed, it can be evaluated relatively cheaply, therefore making a local or global

search of the approximate design space feasible in terms of computational cost. Among these

data-driven SBO algorithms, there are three general differences: (1) the sampling technique,

(2) the formulation of the surrogate model, and (3) how the algorithm progresses.
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Figure 2.3: Workflow of a surrogate-based optimization (SBO) algorithm.

The sampling plan, which is otherwise known as the design of experiments (DOE) [27, 25],

used by these methods can have a large effect on computational efficiency. Regardless of

whether the method is local or global, the sampling plan must contain enough points to capture

dominant trends in the area being searched [53]. At the same time, oversampling in a region

of the design space is unnecessarily expensive. Thus, the usual goal when selecting a DOE is

to capture the important trends to an extent that allows the algorithm to proceed, while also

using minimal computational cost (i.e. number of samples). Provided in Fig. 2.4 are some of

the most popular sampling plans. The full factorial approach [54, 27] (Fig. 2.4(a)) is expensive

but covers the design space evenly in uniform intervals. Random sampling [54] (Fig. 2.4(b)) is

fairly common, but may result in oversampling in some regions and very few samples in others.

Latin Hypercube Sampling, or LHS [25, 27, 54] (Fig. 2.4(c)), is one of the most popular because

it helps ensures that samples are more widely distributed compared to random sampling. Also,

it tends yields better results than full-factorial. Star distribution sampling [55, 24] (Fig. 2.4(d))

is another form of factorial sampling, and is quite popular for local SBO methods. In addition,

there are other techniques that can help improve sampling plans. For example, Fig. 2.5 shows

an LHS plan that has been optimized using an evolutionary algorithm [27].
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Figure 2.4: Common sampling plans for use in data-driven SBO methods [55].
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Figure 2.5: LHS sampling plan optimized using an evolutionary algorithm [27].

Regardless of the DOE used, data-driven SBO methods [25, 26, 43] may use many different

types of surrogate models. Among the most common for ASO are polynomial response sur-

faces [25] and kriging models [25, 26, 56]. Response surfaces usually use least squares method

to find a polynomial fit of the design space [57]. Kriging also has a polynomial component in

addition to a probabilistic component. Another approach widely used for ASO is the Artificial

Neural Network (ANN) method [58]. Support Vector Machines (SVM) [59], in addition, have

been used in aeronautics but are not commonly applied to aerodynamic shape optimization.

In order for data-driven SBO algorithm to converge, two general approaches may be taken.

Firstly, when utilizing a local search, one or more design points are usually added on or near

the surrogate’s optimum. As the algorithm progresses, the local search region approaches the

vicinity of an optimum, while in the process the search space may shrink or grow depending

on the surrogate’s accuracy (which is known as the trust region technique [21, 60]). This type

of method, which utilizes a series of local surrogate-based searches, is known as sequential

approximation optimization (SAO) [20, 21, 22, 23, 24]. Secondly, while a similar approach is

sometimes used for global search algorithms, the surrogate may instead be updated near points

of high surrogate model error. This incrementally improves global accuracy of the surrogate

throughout the entire design space; this process is often called the “infill” approach because

the surrogate model is incrementally updated with design space data at infill points.
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To ensure usable accuracy of these methods, a large number of data samples are required.

Moreover, the number of samples grows quickly with the problem dimensionality. Therefore,

while data-driven SBO methods can be quite efficient for low-dimensional cases (less than 10

design variables), they are typically less efficient than alternative methods for larger dimen-

sionality (e.g., direct gradient-based and physics-based SBO).

2.2.2.2 Physics-Based Methods

An alternative way of performing SBO is to use physics-based surrogate models [19]. These

models are constructed by correcting/enhancing the underlying physics-based low-fidelity mod-

els [60]. A low-fidelity model, or a simplified description of the system under consideration, can

be obtained by neglecting certain physical or second-order effects, using simplified equations,

or by exploiting the high-fidelity model with a coarser computational description. The low-

fidelity models are subsequently corrected or enhanced to become a reliable representation of

the high-fidelity model by specific methods such as multiplicative or additive corrections [22],

space mapping (SM) [61, 28], adaptive response correction (ARC) [62], adaptive response pre-

diction (ARP) [63], multi-level optimization [64, 65], or shape-preserving response prediction

(SPRP) [66]. Although the physics-based surrogate models are not as versatile as the data-

driven ones, they have the potential to offer significantly better efficiency in terms of the

computational cost. Many algorithms require only a single high-fidelity model evaluation per

design iteration [60]. Consequently, physics-based surrogates may exhibit better generalization

capability than the data-driven ones.
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CHAPTER 3. ROTOR COMPUTATIONAL MODEL

This chapter provides details on the computational model used throughout this work. In

particular, the governing equations are described Section 3.1. In Section 3.2 the CFD model is

described, where the flow solver, computational domain, and boundary conditions are briefly

described. Section 3.3 describes a grid independence study using the CFD model. Finally,

numerical validation of the model is provided in Section 3.4, where the CFD model output is

compared to experimental measurements and analytical predictions for a single-rotor design.

3.1 Governing Equations

The incompressible Reynolds-averaged Navier-Stokes (RANS) equations are taken as the

governing flow equations. The continuity equation is

∂ūi
∂xi

= 0, (3.1)

and the momentum equation is

ūj
∂ūi
∂xj

= −1

ρ

∂p̄

∂xi
+ ν

∂2ūi
∂xj2

−
∂u′iu

′
j

∂xj
+
fi
ρ
, (3.2)

In these equations, u, x, ρ, p, and ν represent velocity, position, density, pressure, and kinematic

viscosity, respectively. The overbar in these equations denotes a time averaging operation,

while the prime symbol represents a perturbation from the mean value. The Reynolds stress

tensor, u′iu
′
j is modeled using the standard two-equation k − ε turbulence model [67]. The

effect of turbine rotors is modeled using the body force term, fi. The amount of body force is

determined using the computed local flow velocity and blade element theory with user-provided
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lookup tables of rotor blade sectional lift and drag force coefficients. These coefficients can be

obtained experimentally or numerically and may be corrected for 3D stall effects. The body

force is distributed over a volume and a Gaussian distribution is applied along the flow direction

as suggested in Mikkelsen [37]. Prandtl’s tip loss correction is applied to account for finite-span

induction (tip) loss that is ignored in the blade element theory.

3.2 CFD Model

The RANS equations are solved using simpleFoam [17] on an axisymmetric domain with a

thickness of one cell in the circumferential direction. The other surfaces of the domain lie at 10

times the main rotor radius in the upwind, downwind, and spanwise directions, while the main

rotor radius R1 is nondimensionalized to one. A schematic of the CFD domain is provided in

Fig. 3.1. A nondimensional velocity, density, and pressure of one is applied to the inlet surface

and a zero-gradient boundary condition is applied on the exit boundary. In the diagram, flow

direction is from left to right.

Axisymmetric

x

Figure 3.1: Schematic of the solution domain used by the CFD model. R1 and R2 are the radii
of the primary and secondary rotors of a DRWT, and ∆x is the axial separation between the
rotors.
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3.3 Grid Independence Study

A structured mesh, measuring one cell thick in the circumferential direction, is created

using the OpenFoam blockMesh utility. This meshing tool generates a structured grid in any

number of blocks within the domain. The blockMesh utility, within each block and in each

direction, solves for a number of cells as defined by the user. In each direction, the ratio of cell

size between the first and last cells in each block can be modified as well. An example of the

resulting mesh is provided in Fig. 3.2.

In order to ensure that mesh dimensions do not have an impact on the objective function

value, a mesh convergence study was carried out. The design point of λ1 = 8, λ2 = 6, R2 =

0.2,∆x = 0.5 was used for this study and the results are provided in Fig. 3.3. The results

indicate that the resolution of the numerical discretization does play a role in the predicted

value of power coefficient (CP ). Moreover, for very small grid dependence, a mesh cell count

of hundreds of thousands of cells may be needed. Note that similar trends are provided in

Ref. [30], where the authors showed a noticeable grid dependence using both actuator disk and

line models; furthermore, they also note that mesh refinement increases the computed power

coefficient.

Figure 3.2: Example mesh of the DRWT.
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Figure 3.3: Grid independence study results: the effect of number of cells on DRWT power co-
efficient (left), an approximate error of DRWT power coefficient (center) where CP,extrapolated =
0.54257 and N is the number of cells in the stream-wise direction, and simulation run time
using a single processor (right).

Initially, this work uses the third coarsest mesh, with approximately 47k cells, for the

optimization runs. This mesh was selected because the CP predicted using this mesh is within

1 percent (0.6%) of the extrapolated value, and further refinement would increase the cost of

optimization immensely. In addition, the CFD model will always have some inherent error

associated with its assumptions. Thus, further reduction of the error due to more refinement

would be insignificant when compared to the error associated with the model’s simplification

of physics.

However, in Section 5.1.4, this grid convergence study is revisited for several reasons. Firstly,

a finer mesh is ultimately decided on because the level of refinement affects where the optimum

is located in the design space. Secondly, because this work utilizes a multi-fidelity approach,

a wider selection of coarse meshes was ultimately needed. In total, this work utilizes four

different meshes, two for low-fidelity models, in addition to the initial and refined meshes.

Further details about this process are provided in Section 5.1.4. The example model output

are provided in Fig. 3.4 where the axial separation between rotors is 0.5, the tip speed ratio of

the main rotor λ1 = 8, and the tip speed ratio and radius of the secondary rotor are λ2 = 6

and R2 = 0.2, respectively.
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(a) SRWT (λ1 = 8) (b) DRWT (λ1 = 8, λ2 = 6, R2 = 0.2,∆x = 0.5)

Figure 3.4: Example flow solutions showing gauge pressure contours for single and dual rotors.

3.4 Numerical Validation

The actuator disk model method is validated against experimental data and blade element

momentum (BEM) theory predictions. The three-bladed, stall controlled, 95 kW Tellus T-

1995 is used for validation, and the experimental data is obtained from Ref [68]. The turbine

rotor diameter is 19 m. The blade chord and twist distributions are shown in Fig. 3.5(a).

Figure 3.5(b) compares the turbine characteristic (CP − λ) curve as predicted by the actuator

disk model against measured data as well as BEM predictions. Variations of torque force

coefficient, Cτ and thrust force coefficient, CT with blade span, λ agree well between the CFD

and BEM predictions. Torque force is the component of the aerodynamic force in the plane

of the turbine rotor, and the thrust force is normal to this plane. Details about the model

implementation and validation can be found in Refs. [1, 8, 2].
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Figure 3.5: Geometry and verification results for the Tellus T-1995 turbine: (a) blade chord
and twist distributions, (b) comparison between data and predictions, and radial variations of
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CHAPTER 4. OPTIMIZATION METHODOLOGY

Each model evaluation is computationally expensive, so depending on the optimization

method used, the amount of time needed to find the optimum can vary dramatically. There-

fore, minimizing the number of function evaluations is of primary interest when selecting an

optimization method. Having this in mind, this chapter presents three general approaches.

These include the traditional parametric sweep, a direct optimization method, and three types

of surrogate-based methods, two of which exploit data-driven models while the third exploits a

physics-based model. Among the particular methods used, the direct and data-driven methods

are essentially off-the-shelf algorithms which could be applied to any design space. The final

method, which utilizes a multi-fidelity framework, is formulated specifically for the DRWT

computational model.

4.1 Optimization Problem Formulation

The purpose of an optimization process is to locate the best set of design variables x∗ within

a feasible design space. In its most general form, this task is approached by solving the problem

x∗ =argmin
x

H(f(x))

s.t. g(x) ≤ 0,

h(x) = 0,

l ≤ x ≤ u,

(4.1)

where x is the design variable vector, H is the objective function, f is the high-fidelity model

response vector, g are inequality constraints, h are equality constraints, and l and u are the

lower and upper bounds on x, respectively.
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4.2 Search by Parametric Sweeps

The traditional use of parametric sweeps involves sampling the design space at uniformly

distributed design points. The maximum value found in this search is then taken to be the

optimum. Clearly, this relatively simple method is more costly than direct or surrogate-based

optimization methods. Moreover, it does not guarantee that the optimal design is found due

to finite size of parameter discretization used in the sweep.

4.3 Direct Optimization Methods

A derivative-free method was chosen to perform direct optimization. Gradient-based ap-

proaches are not a good choice in this case because adjoint sensitivity information is not avail-

able, and the CFD model is not quite smooth due to the use of lookup tables. This aspect of

the model leads to very small fluctuations in computed turbine power coefficient throughout

the design space. These jumps are virtually invisible in most cases, but can sometimes lead to

inaccurate gradient estimates on a small scale.

The particular method chosen for this application is the pattern search algorithm [18, 19].

Methods of this type are typically more costly than their gradient-based counterparts but have

the benefit of being more immune to numerical noise, which may be present when using coarse-

mesh simulation models. The pattern search algorithm is a stencil-based local optimization

method that explores the neighborhood of the current design point. A rectangular grid (i.e.,

one point in each direction and in each dimension) is used in this implementation. The search

process utilizes grid-constrained line search with the search direction determined using the

objective function gradient estimated from perturbed designs. In case of a failure the best

perturbation (if better than the current design) is selected. Finally, the grid is refined if the poll

step does not yield an improved design; this stage is illustrated in Fig. 4.1. For more information

about the particular pattern search algorithm used in this work, refer to Ref. [18, 19].
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Figure 4.1: A conceptual diagram of pattern-search method using a rectangular grid [18, 19].

4.4 Surrogate-Based Optimization with Data-Driven Models

Optimization methods that exploit surrogate models are numerous, and can vary signifi-

cantly in efficiency and complexity [25, 26, 43]. Moreover, some types of methods are most

efficient for low-dimensional problems (less than 10 design variables) while others are efficient

for well into the medium-dimensional realm (10-40 design variables). In general, SBO meth-

ods can exploit two different types of surrogate models, which include the data-driven and

physics-based varieties. Data-driven surrogates include models such as polynomial response

surfaces [25] and kriging [26], while physics-based surrogates include methods such as space

mapping [61, 28], shape-preserving response prediction [66], adaptive response correction [62],

adaptive response prediction [63], and multi-level optimization [64, 65]. The SBO methods

used in this work exploit polynomial response surfaces [25], kriging models [26], and space

mapping [61, 28] surrogates.

4.4.1 Kriging with Infill

In general, a kriging surrogate model is the sum of two components [26]: one term is a

polynomial regression model while the other represents a fluctuation around this trend. The

fluctuations are modeled as a process with zero mean, and are assumed to be correlated as a

function of distance as described by the selected correlation model.
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The kriging model is given as [26]

ŷ(x) = β∗Tu(x) + γ∗T v(S,x), (4.2)

where

u(x) = [u1(x), ..., um(x)]T (4.3)

and

v(S,x) = [R(θ, s1,x), ..., R(θ, sm,x)]T . (4.4)

In these expressions, m is the number of sampled points, si is the ith sampled design point

(while S represents the set of all s), x is the design point for which a prediction is needed,

and ŷ(x) is the predicted response at this value x. The (∗) symbol denotes the optimal values

of scaling parameters. Given in (4.3) and (4.4) are expressions for u and v, which represent

unweighted polynomial regression and fluctuation terms, respectively. The model parameters

β, γ, and θ are computed within the DACE kriging Matlab toolbox [56].

The parameters β, γ, and θ are functions of not only S and f(S), but also the user-defined

regression and correlation models. In this work, a second order polynomial regression model

and the Gaussian correlation model [26]

R(θ, si,x) =

n∏
j=1

R(θj , (xj − sj i)) =

n∏
j=1

exp(−θj(xj − sj i)2) (4.5)

are used. In order to generate the surrogate, the 2nd-order regression model requires more

samples than the 0th- or 1st-order alternatives. The value for this lower limit is given as [26]

mmin = 1 + 2n+ nC2, (4.6)

where nC2 is the binomial coefficient.
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In most cases, a single global kriging model of the design space is either prohibitively

expensive or too inaccurate to be used for optimization. For this reason, criteria for updating

an initial kriging model, which is generated from sparsely sampled data points, are explored.

The initial sampling plan is generated using an algorithm provided in Ref. [27], which generates

a Latin hypercube sampling (LHS) plan with an optimized Morris-Mitchell space filling metric

by means of an evolutionary algorithm. The minimum number of samples, given by (4.6), is

used for each trial.

In terms of infill criteria, two different methods are applied, which include minimizing the

predicted objective function (IC1) and maximizing the expected improvement (IC2), which are

defined as

xIC1 = argmin
x

(f̂(x)), (4.7)

and

xIC2 = argmin
x

(−E[I(x)]). (4.8)

Here, following Ref. [27], E[I(x)] for nonzero surrogate error ŝ is given as

E [I(x)] = (ymin − ŷ(x))Φ

(
ymin − ŷ(x)

ŝ(x)

)
+ ŝφ

(
ymin − ŷ(x)

ŝ(x)

)
, (4.9)

which can implemented using the alternative form

E [I(x)] = (ymin − ŷ(x))

[
1

2
+

1

2
erf

(
ymin − ŷ(x)

ŝ(x)
√

2

)]
+ ŝ

1√
2π

exp

[
− (ymin − ŷ(x))2

2ŝ(x)2

]
. (4.10)

In these expressions, Φ and φ are the cumulative distribution and probability density functions,

respectively, ŝ is the predicted error at the input design point x, and ymin is the minimum

objective function value sampled so far.
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When using IC1, the update point is found using two steps:

1. A genetic algorithm (GA) is used to find a point close to the optimum, and

2. The corresponding point is used as an initial point for the pattern search method.

This approach is relatively costly (sometimes on the order of a few seconds), but can typically

handle highly multi-modal kriging models. The additional cost associated with it is insignificant

in this problem, however, because the surrogate can be evaluated very cheaply when compared

to the CFD model.

When using IC2, a similar approach is used to find the global minimum. In this case,

however, two different initial points are used by the pattern search method. These two optima

are then compared, and the better design is selected to be the next update point. The two

initial points used by pattern search are

1. The surrogate’s predicted optimum (i.e., the process used for IC1), and

2. The optimum found by a GA.

This process may take 2-3 times longer than IC1, especially if a large number of generations

are used by the GA. However, if the objective function is very expensive to evaluate, then the

added cost is relatively cheap.

4.4.2 Sequential Approximation Optimization

A simple variation of SBO with data-driven surrogates is sequential approximate opti-

mization (SAO) [20, 21, 22, 23]. In SAO, the optimization is limited to a certain (typically,

rectangular shaped) subregion of the search space, in which a local surrogate model, such as

a low-order polynomial, is set up based on a limited number of high-fidelity model data sam-

pled in the subregion. A new design is found by optimizing the surrogate within the subregion,

which is followed by setting up a new subregion according to a chosen relocation strategy. Often

the new subregion is in the direction of the last iteration optimum [23], i.e., the last optimum

becomes the center of the new region. Adjustment of the subregion size may be based on the

quality of the designs obtained by optimizing the surrogate, e.g., a comparison of the actual
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versus predicted improvement of the high-fidelity objective function, as in a trust-region-like

framework [21, 60]. An illustration of this process is presented in Fig. 4.2.

In this thesis, the work of Leifsson et al. [24] is followed, so the local surrogate models are

built using a quadratic response surface without mixed terms:

ŷ(x) = β0 +
n∑
i=1

βixi +
n∑
i=1

βiixi
2, (4.11)

where n is the space dimensionality, and the coefficients βi are found as

β = (UTU)−1UT ys (4.12)

with

U =
1 x1

1 xn
1 (x1

1)
2

(xn
1)

2

1 x1
m xn

m (x1
m)2 (xn

m)2


 . (4.13)

d2

d1

x
(0)

Design space

x(1)

x(2)
x(2) = x(3)

x(4)

x(4) = x(5)

x(0)

Figure 4.2: SAO algorithm flow. For iteration i, x(i) is the current design point while d =
[d1 d2]

T describes the size of the local search space in each dimension of parameter space.
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Here, m is the number of samples, and ys = H(f(x)) are the sampled high-fidelity data. In this

work, a star distribution of m = 2n + 1 grid points is used, where n is the number of design

variables, is sampled around the current iteration’s design point.

Once the response surface is identified, the optimum on the surface is found. The design

space is then sampled at this point and one of two actions are subsequently taken. If H(f(x))

at this new point is worse than H(f(x)) at the iteration’s center point, then the grid size is

scaled down by a user-defined parameter. If, on the other hand, H(f(x)) at this new point is

better than H(f(x)) at the center point, then the central grid point is relocated to the new

design point and the iteration is complete. In the latter case, the grid size is scaled up or down

by user-defined parameters depending on the value of the gain ratio

r =
H(f(xtmp))−H(f(x(k)))

H(ŷ(k)(xtmp))−H(ŷ(k)(x(k)))
, (4.14)

where xtmp is the current surrogate’s optimum and k denotes the current iteration. This process

is repeated until at least one of the predetermined stopping criteria has been met.

4.5 Surrogate-Based Optimization with Variable-Fidelity Models

4.5.1 Optimization Algorithm

A generic variable-fidelity optimization algorithm produces a sequence x(i), i = 0, 1, ..., of

approximate solutions to (4.1) (here, x0 is the initial design) as

x(i+1) = argmin
x

H(s(i)(x)), (4.15)

where s(i)(x) is a surrogate model at iteration i. The surrogate model s is constructed using

a suitably corrected physics-based low-fidelity model c. The surrogate model s is supposedly

much cheaper in computational terms than the high-fidelity model f . On the other hand, it

is assumed to be sufficiently accurate, particularly in the vicinity of the current design x(i). If

these conditions are satisfied, the algorithm (4.15) is likely to quickly approach the high-fidelity

optimum x∗. Typically, the high-fidelity model f is evaluated only once per iteration (at every
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new design x(i+1)). To optimize the surrogate model, the pattern search algorithm [18, 19]

discussed previously is used.

4.5.2 Multi-Point Output Space Mapping

In this work, multi-point output space mapping (OSM) [28] is used. For this problem, and

for this variation of the space mapping technique, the surrogate model is constructed as

s(i)(x) = A(i) ◦ c(x) + D(i) + q(i)

=
[
am

(i)cm(x) + dm
(i) + qm

(i) as
(i)cs(x) + ds

(i) + qs
(i)
]T
,

(4.16)

where ◦ denotes component-wise multiplication, and the subscripts m and s indicate main

and secondary rotor components of the model response vector (which are c(x) = [cm cs]
T and

f(x) = [fm fs]
T for the coarse and fine models, respectively). Note that when using alternative

space mapping approaches, this surrogate model formulation may differ. For example, input

space mapping applies additive and multiplicative terms to the input argument x, rather than

doing a similar process on the output arguments c(x). For OSM, the response correction

parameters A(i) and D(i) are obtained by solving

[A(i),D(i)] = argmin
[A,D]

i∑
k=0

||f(x(k))− (A ◦ c(x(k)) + D)||2, (4.17)

i.e., the response scaling is supposed to (globally) improve the matching for all previous iteration

points. The additive response correction term q(i) is defined as [28]

q(i) = f(x(i))−
[
A(i) ◦ c(x(i)) + D(i)

]
, (4.18)

i.e., it ensures a perfect match between the surrogate and the high-fidelity model at the current

design x(i), i.e. s(i)(x(i)) = f(x(i)) (zero-order consistency).

The term q(i) can be calculated using (4.18). In place of solving (4.17), A(i) and D(i) can

be obtained analytically as [28]
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 am
(i)

dm
(i)

 = (CT
mCm)−1CT

mFm,

 as
(i)

ds
(i)

 = (CT
s Cs)

−1CT
s Fs, (4.19)

where (f refers to the high-fidelity model f)

Cm =

 cm(x(0)) cm(x(1)) ... cm(x(i))

1 1 ... 1


T

,

Fm =

[
fm(x(0)) fm(x(1)) ... fm(x(i))

]T
,

(4.20)

Cs =

 cs(x
(0)) cs(x

(1)) ... cs(x
(i))

1 1 ... 1


T

,

Fs =

[
fs(x

(0)) fs(x
(1)) ... fs(x

(i))

]T
,

(4.21)

which is a least-square optimal solution to the linear regression problem Cma
(i)
m + d

(i)
m = Fm

and Csa
(i)
s + d

(i)
s = Fs, equivalent to (4.17). Note that the matrices CT

mCm and CT
s Cs are

non-singular for i > 1. For i = 1 only the multiplicative correction with A(i) components are

used, which can be calculated in a similar way.

4.5.3 Low-Fidelity Modeling

The low-fidelity model c needs to be a fast representation of the high-fidelity one f . Most

commonly, this is done in two different ways. Firstly, the high- and low-fidelity models can

use separate sets of governing equations. For example, the high-fidelity CFD model could use

RANS equations while the low-fidelity model uses Euler, VLM, or even analytical equations, all

of which are faster yet less accurate than RANS equations. Secondly, the two models can use

the same governing equations while using different meshes and flow solver convergence criteria.

In this work, the latter approach is taken. Section 5 provides further details about the specific

low-fidelity models utilized in this work.
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CHAPTER 5. NUMERICAL APPLICATIONS

This chapter presents results of applying the optimization methods described in Chapter 4

to the design of dual-rotor wind turbines (DRWTs). In particular, three test cases of varying

cost and complexity are examined; after this, the most complex case is extended to obtain a

range of optimal designs rather than single designs. Then, for comparison, the results using

low-fidelity models are compared to those using the high- and multi-fidelity approaches. Lastly,

the advantages and disadvantages are discussed in the final section.

In the process of these investigations, two similar but distinct approaches are used. These

approaches differ in the objective function used as well as by the computational discretization

used by the CFD model. In the first approach, a moderately fine mesh (converged to within 1%

of the extrapolated power coefficient) is selected and the sum of power coefficients of the two

rotors is maximized. The second, more recent approach makes use of a finer mesh (converged

to approximately 0.001 in terms of power coefficient absolute value) and the increase in power

coefficient with respect to the main rotor operating in isolation is maximized.

5.1 Problem Description

This section provides the objective functions for the different approaches, and also describes

which optimization methods utilize these objective functions. Additionally, constraint functions

and design variable bounds for each test case are provided.

5.1.1 Objective Function 1: Combined Power Coefficient

For DRWTs, we want to maximize the combined power capture from both rotors, there-

fore the objective function used for the first approach to this problem is H(f(x)) = −(Pm +

Ps)/
(
1
2ρ∞v∞

3A
)
, where Pm = τmΩm and Ps = τsΩs are power captured by the rotors, τm,s
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and Ωm,s are rotor torque and angular speed, respectively, and A is the area swept by the main

rotor. This is implemented by simply summing the computed power coefficients for each rotor

(CPm and CPs). When using this objective function, the stopping criterion for all optimization

methods is simply when the number of function calls exceeds 50.

When using this objective function, all methods except the output space mapping (OSM)

approach are used (i.e. parametric sweep, pattern search, SAO, and kriging with infill). The

reason for this is based on the mesh used for this approach. For this approach, only a moderately

fine mesh is used. This means that unless an extremely coarse mesh is used as a low-fidelity

model, the simulation time ratio between the high- and low-fidelity models would most likely be

too small to achieve efficient results. The responses of the models would likely be very similar

as well, so corrections to the low-fidelity model would be insignificant. Thus, a multi-fidelity

approach would not be a logical choice for this particular scenario.

5.1.2 Objective Function 2: Relative Power Increase

In this revised approach, the focus is shifted to maximizing the increase in power capture

when compared to a single-rotor wind turbine. The objective function is then H(f(x)) =

−100(CPm + CPs − CP0)/CP0 , where CP0 is dependent on the mesh used. The magnitude of

this objective function value is therefore equivalent to the percent increase in power capture

compared to the main rotor operating in isolation. When using this objective function, the

stopping criteria for all of the methods are based on the number of function calls as well as the

change in H(f(x)) between consecutive iterations.

While all direct and surrogate-based optimization methods are tested using this objective

function, the parametric sweep approach is not. This is because the grid used for this newer

approach is more costly than the previous mesh, so a full-factorial sampling of the design space

would, in the author’s opinion, be too computationally expensive for what there is to gain from

it. Additionally, when using kriging, only IC1 is used. This is due to two reasons. Firstly, when

using the LHS sampling plan in this work, the expected improvement function is often greatest

at the boundaries of the domain. These additional samples are costly and do not contribute
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model accuracy in the vicinity of the optimum. More importantly, the objective function

stopping criterion does not work well for this infill criteria; often, it would stop prematurely.

When using OSM, the choice of model response vectors (c and f in Sec. 4.5.2) can affect

the final outcome. In this work, these low- and high-fidelity CFD model response vectors are

c(x) = [cm cs]
T =

[
100

(
CPm,c − CP0,c

CP0,c

)
100

(
CPs,c
CP0,c

)]T
f(x) = [fm fs]

T =

[
100

(
CPm,f − CP0,f

CP0,f

)
100

(
CPs,f
CP0,f

)]T (5.1)

so the objective function for OSM is then H = −(cm + cs) and H = −100(fm + fs) for the low-

and high-fidelity model responses, respectively. In these expressions, the subscripts m and s

indicate a value for the main and secondary rotors. Similarly, c and f indicate values from the

coarse and fine (low- and high-fidelity) models.

5.1.3 Design Variables and Constraints

Numerous properties of the model could be treated as design variables. For example, airfoil

selection, chord length, and blade twist at different spanwise stations all impact wind turbine

power capture. However, these properties will be kept fixed for the first two cases. For the

main rotor, these geometric properties are based on the NREL 5MW offshore wind turbine [31],

while the secondary rotor geometry was determined using an inverse design analysis described

by Rosenberg et al [1]. In Case I, the design variables will be restricted to the tip speed ratio

(λ2) and radius (R2) of the secondary rotor, while the axial separation between the rotors (∆x)

is fixed at 0.5 (see Fig. 3.1). The design variable vector for Case I is written as x = [λ2 R2]
T . In

Case II, ∆x is added as a design variable so the design variable vector becomes x = [λ2 R2 ∆x]T .

For both cases, there are no inequality or equality constraints, only design variable bounds.

Table 5.1: Design variables bounds and constraints used for each case.

λ2 R2 ∆x c g(x)

Case I [0,12] [0,0.8] 0.5 fixed none

Case II [0,12] [0,0.8] [0.05,0.8] fixed none

Case III [0,12] [0,0.8] [0.05,0.8] [0.001,0.2] (5.2)
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In the third test case, the design space is further expanded to include the geometric shape

of the secondary rotor. This is done by fitting a b-spline curve to the initial chord distribution

of the secondary rotor and subsequently optimizing the vertical positions of the control points.

Further details about this parameterization are provided in Sec. 5.4. For all three cases, the

upper and lower bounds of the design variables are give in Table 5.1. Note that in this table, c

represents b-spline control point coordinates which control the spanwise chord distribution of

the secondary rotor. Thus, these design variables c should not be confused with the low-fidelity

model response c seen previously.

Unlike Cases I and II, which are solved using no constraints, the design space in Case III

includes non-physical designs. Such a scenario can occur when c becomes large enough, and ∆x

small enough, for the rotor blades (of the main and secondary rotors) to overlap. Therefore, a

nonlinear constraint must be implemented when solving the problem. The expression used for

this constraint is

g1(x) =
1

2
argmax

r
(cm cos θm + cs cos θs) + ∆min −∆x for r ∈ [0, R2], (5.2)

where c and θ are chord and twist values for the spanwise station r, and ∆min is a predetermined

constant which describes the minimum desired spacing between the trailing and leading edges

of the secondary and main rotors, respectively. In this work, this value is arbitrarily set to

a small but nonzero value of 0.001, simply to ensure that the rotors are not flush with one

another.

5.1.4 Model Setup

Four different meshes are used throughout this work. The first approach utilizes a mod-

erately fine mesh to maximize the total power coefficient. This mesh was selected because it

yields a power coefficient within an estimated 1% of the actual value. However, when setting

up the multi-fidelity optimization cases, it became clear that a more diverse range of meshes

may be needed to efficiently obtain a high-quality design. Thus, the grid dependence study

was ultimately revisited in search of a more effective low-fidelity model for this application.
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While the results presented in Fig. 3.3 varied only the most influential parameter, the cell

growth rate in the stream-wise direction, the newer analysis varied an additional parameter.

This added parameter is the number of cells in the stream-wise direction within each rotor.

Because the mesh blocks containing the rotors are of fixed width, this parameter is inversely

proportional to the minimum cell width in the stream-wise direction. Exponential refinement

of this parameter is done as axial cell growth rate is reduced incrementally, giving a 4x5 grid

of power coefficients for the same design point used in the initial grid study. In the radial

direction, cell growth rates are kept fixed while the smallest cell width, which is located at the

main rotor tip, is kept fixed at five times the minimum cell width in the axial direction.

The results of this more detailed mesh convergence study are provided in Fig. 5.1. As

a result of the analysis, a high-fidelity mesh (HF), which is converged in terms of combined

power coefficient to approximately 10−3, is selected. For the low-dimensional cases, HF is used

as the high-fidelity model and LF 1 as the low-fidelity model when using space mapping. For

the medium dimensional case, this work investigates two separate cases which utilize LF 1 and

LF 2 respectively as the low-fidelity model.
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Figure 5.1: Results of the secondary mesh independence study: power coefficients (left), sim-
ulation run time using three processors (right). MF is the medium-fidelity mesh used in first
approach. HF is the high-fidelity model used in the second approach. LF 1 and LF 2 are the
low-fidelity models used by multi-point OSM in the second approach.
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The purpose of using two separate low-fidelity models is to investigate the effects of different

coarse models on the quality of the solution, as well as computational cost of the optimization

process. In addition to using separate meshes, residual stopping criteria are adjusted as well.

Based on typical convergence rates of power coefficient, residual stopping criteria are relaxed

for the coarse models by two orders of magnitude, which approximately halves the number of

flow iterations required. When one processor is used, the simulation time ratios of LF 1 and

LF 2 with respect to HF are around 25 and 60, respectively. The number of cells, computed

power coefficient values, and simulation time for these models are provided in Table 5.2.

The dimensions of the mesh topology change with rotor separation, which may affect the

baseline power coefficient value CP0 . Thus, it is worthwhile to investigate the effect of rotor

separation on this baseline value, which is found by setting radius and tip speed ratio of the

secondary rotor equal to zero. Values of CP0 for a range of rotor separation values were found

for each of the four meshes shown in the grid convergence results (Fig. 5.1). Based on these

results, which are shown in Fig. 5.2(a), grid dependence due to rotor separation clearly reduces

as the grid is refined (i.e., CP0 for HF is approximately constant). Therefore, optimizing the

high-fidelity model using both absolute power coefficient value as well as the value relative to

the baseline turbine may yield the same solution. However, when considering the low-fidelity

models, grid dependence of the baseline value may have a large effect on where the optimum

would lie in the design space. Regardless, when computing the objective function for each

high- and low-fidelity model, CP0 is taken to be the mean value of CP0(∆x) in this figure. For

reference, the computed pressure contours and streamlines are provided in Fig. 5.2(b). In this

figure, the flow solution was obtained using HF.

Table 5.2: Combined power coefficient, number of cells, and run time using the meshes HF,
MF, LF 1, and LF 2. CP is the power coefficient for the grid study design point, Ncells is the
number of mesh cells, and t is the simulation run time using 16 processors.

HF MF LF 1 LF 2

CP 0.54462 0.53608 0.53062 0.49925

Ncells 121,218 46,864 29,088 11,248

t (min) 12.681 2.411 1.340 0.744
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Figure 5.2: Performance and flow field of the baseline design: grid dependence of the baseline
power coefficient value for each mesh (left), pressure contours and streamlines (right).

5.2 Case I: Optimizing R2 and λ2

In this section, the size and rotational rate of the secondary rotor are optimized. In other

words, the design variables will be restricted to the tip speed ratio (λ2) and radius (R2) of

the secondary rotor, while the axial separation between the rotors (∆x) is fixed at 0.5 (see

Fig. 3.1). The design variable vector for this two-parameter case is written as x = [λ2 R2]
T . As

given in Table 5.1, the design variable bounds are chosen to be 0 ≤ λ2 ≤ 12 and 0 ≤ R2 ≤ 0.8.

In the following sections, this two-parameter case is solved using both approaches described in

Sec. 5.1.

5.2.1 Maximization of Combined Power Coefficient (Case I)

For Case I, the parametric sweep was done by uniformly sampling a 12 × 12 array of grid

points in the design space. The axial separation selected for this case is 0.5. A main rotor tip

speed ratio of 8 is used for this study because it corresponds approximately to the maximum

energy capture of this turbine if the secondary rotor is removed. The results of this study are

provided in Fig. 5.3.



www.manaraa.com

44

λ
2

0 2 4 6 8 10 12

R
2

0

0.2

0.4

0.6

0.8

0.48

0.49

0.5

0.51

0.52

0.53

0.54

0.55

Best design found

Figure 5.3: Parametric sweep result for Case I: contours of the combined power coefficient of
both rotors.

This approach, requiring a total of 144 high-fidelity CFD evaluations, yielded an optimum

at λ2 = 6.55, R2 = 0.218 and a power coefficient of 0.536. This value is approximately 99.97%

of the maximum value obtained by optimization techniques. However, results from all opti-

mization algorithms obtain higher CP values in much less time, which is to be expected.

Three initial design points, which are given in Table 5.3, were utilized when using pattern

search [18, 19, 43]. One of these points led to zero secondary rotor radius and therefore a single

rotor design (Fig. 5.5). The other two initial design points led to the global maximum, which

is near R2 = 0.2 and λ2 = 6. The results of these optimization studies are presented below in

Figs. 5.4, 5.5, and 5.6. The optimum found in the first and third design searches is reproducible

by using multiple initial points. Therefore, it is clear that this is the global optimum, and the

performance of surrogate-based methods can now be compared to these ideal direct cases.

Table 5.3: Initial points used for pattern search for Case I using objective function 1 (Sec. 5.1.1).

λ2 R2 ∆x

Trial 1 10 0.5 0.5

Trial 2 2 0.65 0.5

Trial 3 6 0.6 0.5
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Figure 5.4: Pattern search trial 1: sampled designs with power contours as a backdrop.

λ
2

0 2 4 6 8 10 12

R
2

0

0.2

0.4

0.6

0.8

0.48

0.49

0.5

0.51

0.52

0.53

0.54

0.55

Final design
point (blue)

Grid search
point

Initial design
point (black)

Figure 5.5: Pattern search trial 2: sampled designs with power contours as a backdrop.
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Figure 5.6: Pattern search trial 3: sampled designs with power contours as a backdrop.

Optimization using SAO (Sec. 4.4.2) yielded results comparable to pattern search (Sec. 4.3).

However, this method immediately appears to have one advantage; it tends to move diagonally

in the design space more readily, leading to a faster rate of convergence. The resulting design

points sampled by this method are presented in Fig. 5.7. The convergence metrics are given in

Fig. 5.8.
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Figure 5.7: Contours of CP and the sampled design points using SAO for Case I.
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Figure 5.8: Convergence history of the SAO method for Case I using objective function 1.

When using kriging-based optimization (Sec. 4.4.1), the final result can depend heavily on

the initial sampling plan. Therefore, in order to better compare the two infill criteria IC1

and IC2, which in general represent design exploitation and exploration, respectively, the same

initial sampling will be used for both criteria. Note that the formulation of the criteria are given

in Sec. 4.4.1. Figure 5.9 shows the results of the kriging-based algorithm using the two infill

criteria. In these figures, the initial sampling plan and subsequent update points (50 function

evaluations in total) are shown with the parametric sweep results as a backdrop.

To some extent, the two criteria can be qualitatively assessed using the final surrogate

models as well as all sampled design points. These final models and their corresponding sampled

points are presented in Fig. 5.10, which indicate that both infill criteria are able to quickly find

the region corresponding to maximum power. Additionally, they result in very similar updates

for many iterations until small differences accumulate. However, it is clear that IC2 results

in a more spread out distribution of samples near the optimum, while IC1 is more likely to

add updates very close to existing samples. This result is somewhat intuitive, as EI can often

increase as a function of the predicted model error of the surrogate, which is higher in gaps

between sampled points.
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Figure 5.9: Kriging with updates for Case I using objective function 1 (Sec. 5.1.1): contours of

CP and the sampled points.
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Figure 5.10: Final kriging models for Case I using objective function 1 (Sec. 5.1.1): contours

of the kriging-approximated CP and the sampled points.
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Table 5.4: Summary of results for Case I using objective function 1 (Sec. 5.1.1).

Pattern search SAO Kriging (IC1) Kriging (IC2)

x0 [10 0.5]T [10 0.5]T - -

x1∗ 6.07407 6.08308 6.01553 5.97475

x2∗ 0.21481 0.21341 0.21320 0.21392

H -0.536504 -0.536507 -0.536505 -0.536503

Costa 14 11 8 8
a Function calls needed to reach 99.9% of optimum.

Unfortunately, convergence seems to be slow for both kriging update criteria. This may be

due to factors such as the flatness of the design space near the optimum, as well as the unavoid-

able numerical noise in the CFD model. To counteract these factors, the model may benefit

from sampling a separate set of design points, which could be used to find better model con-

stants in the kriging formulation, particularly in the vicinity of the optimum. Another approach

that may improve convergence is to implement a variation of the trust region concept [21, 60].

The final results of the different methods for Case I are listed in Table 5.4. While they

all give approximately the same final design after 50 function evaluations, some methods are

better than others. Specifically, kriging appears to be the most efficient while SAO is slightly

more costly but converges more reliably.

5.2.2 Maximization of Relative Power Gain (Case I)

This second approach uses a finer grid, a more meaningful objective function, and more re-

alistic stopping criteria for the optimization methods. In addition, the variable-fidelity method

is also used and compared to the methods used in the initial approach.

Figure 5.11 shows convergence metrics of all methods used in this study. The stopping

criteria used for this case are
∣∣H(i) −H(i−1)∣∣ < 0.01 or Nf > 40, where H(i) is the objective

function at design iteration i, and Nf is the number of high-fidelity function calls. When using

kriging, the objective function stopping criterion is applied to the best design found so far,

rather than on the objective function at each sampled design. Among these results, the best

optimized design x∗ = [6.13 0.213]T was obtained after 40 function calls using SAO. At this
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design point, the computed relative power increase with respect to the baseline value is 2.3%.

For reference, the computed pressure contours and streamlines for the initial and final designs

are provided in Fig. 5.12.
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Figure 5.11: Convergence histories for Case I using objective function 2 (Sec. 5.1.2), where
the solutions for both models were computed using 16 processors. Nfeq is the equivalent high-
fidelity function calls in terms of computation time. Norm of the argument is normalized by
the initial magnitude, and each of its dimensional components are normalized by bounds size.
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Figure 5.12: Pressure contours and streamlines of the initial and optimized designs for Case I

using objective function 2 (Sec. 5.1.2).
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Optimized design variable and objective function values, as well as the number of low- and

high-fidelity function calls are provided in Table 5.5. Among the direct and data-driven SBO

methods, kriging is by far the fastest to converge, although the final design point is slightly

worse in comparison to the rest. However, based on convergence of objective function H(f(x))

with respect to equivalent high-fidelity function calls Nfeq, this method appears to approach the

optimum only slightly faster than SAO, with pattern search not far behind. Meanwhile, space

mapping is much faster than all other methods, reaching near the optimum in approximately

6 equivalent high-fidelity function calls. Note, however, that because the simulation time ratio

between high- and low-fidelity models is affected significantly by the number of processors used

(which in this case is 16), Nfeq can vary greatly. Thus, because the time ratio tends to increase

as the number of processors is reduced, using fewer processors would lead to a larger speedup

in terms of equivalent high-fidelity function calls. For example, this case was solved with space

mapping using both 16 and 6 processors, which converged to the same optimum with final Nfeq

values of 10.2 and 7.3, respectively.

Table 5.5: Summary of results for Case I using objective function 2 (Sec. 5.1.2) (stopping
criteria:

∣∣H(i) −H(i−1)∣∣ < 0.01 or Nf > 40). Nc and Nf are the number of low- and high-
fidelity function calls, while Nfeq is the number of equivalent high-fidelity function calls (in
terms of computation time).

PS SAO Kriging OSM (LF 1)

x0 [10 0.5]T [10 0.5]T - [10 0.5]T

x∗1 6.400 6.133 5.925 6.267

x∗2 0.1978 0.2125 0.2268 0.2067

H -2.322 -2.324 -2.302 -2.322

CP 0.54458 0.54459 0.54447 0.54458

Nc - - - 47

Nf 32 40 15 5

Nfeq 32 40 15 10.2

tc (min) - - - 69.6

tf (min) 435.8 535.6 202.2 66.9

ttot (min) 435.8 535.6 202.2 136.5
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5.3 Case II: Optimizing R2, λ2, and ∆x

In Case II, the axial distance between the rotors ∆x is added as a design variable with

the following bounds: 0.05 ≤ ∆x ≤ 0.8. The design variable vector is now x = [λ2 R2 ∆x]T .

Other parameters and variables are the same as in Case I. In the following sections, this three-

parameter case is solved using both approaches described in Sec. 5.1.

5.3.1 Maximization of Combined Power Coefficient (Case II)

The parametric sweep approach for Case II was carried out by sampling an 8×8×8 array of

grid points throughout the design space. Given in Fig. 5.13 are power coefficient isocontours in

the three-dimensional design space. This particularly expensive analysis (512 samples) resulted

in an optimum of λ2 = 6.86, R2 = 0.229,∆x = 0.157, and a CP value of 0.539. This value of

power coefficient is 99.2% of the maximum value obtained by optimization techniques. Clearly,

this traditional parametric approach is much less efficient than the other methods.

Figure 5.13: Parametric sweep results for Case II using objective function 1 (Sec. 5.1.1): con-
tours of CP .
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The pattern search method was able to hone in on the optimum point fairly quickly, but

converged slowly. Convergence of this method for Case II is provided in Fig. 5.14.

SAO worked fairly well for Case II as well. If a convergence criterion based on H or x had

been used, the method would have converged after just 3 iterations. The results for this case

are provided in Fig. 5.15.
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Figure 5.14: Convergence of pattern search for Case II using objective function 1 (Sec. 5.1.1).
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Figure 5.15: Convergence of SAO for Case II using objective function 1 (Sec. 5.1.1).



www.manaraa.com

54

Kriging with infill worked fairly well for Case II, locating the region of the optimum immedi-

ately after the sampling plan ended. This implies that the initial kriging model, which is found

using only ten samples, approximates this design space quite well. Unfortunately, convergence

on the optimum is slow when compared to pattern search and SAO. Note, however, that the

sampling plan can influence the accuracy of the kriging model. Thus, the initial model’s accu-

racy near the optimum, as well as the convergence of the algorithm, may change significantly

depending on the chosen sampling plan. Convergence of this method is provided in Fig. 5.16.

Table 5.6 shows a comparison of results for Case II. In this case, SAO achieved the fastest

convergence while both kriging infill criteria resulted in the slowest. However, it is worth noting

that the performance of this method depends heavily on the initial sampling plan. This may

explain why kriging yielded the best results in Case I but the worst results in Case II.
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Figure 5.16: Convergence of kriging for Case II using objective function 1 (Sec. 5.1.1).

Table 5.6: Summary of results for Case II using objective function 2 (Sec. 5.1.2).

Pattern search SAO Kriging (IC1) Kriging (IC2)

x0 [10 0.5 0.5]T [10 0.5 0.5]T - -

x1∗ 5.92593 6.17608 5.99375 5.92742

x2∗ 0.32222 0.30576 0.33094 0.32509

x3∗ 0.10000 0.10912 0.11421 0.09995

H -0.540009 -0.539949 -0.539962 -0.540006

Costa 21 15 28 26
a Function calls needed to reach 99.9% of optimum.
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5.3.2 Maximization of Relative Power Gain (Case II)

Figure 5.17 shows the convergence histories for all the optimization algorithms, where the

stopping criteria are
∣∣H(i) −H(i−1)∣∣ < 0.01 or Nf > 50. The algorithms converge to approx-

imately the same optimized design x∗ ≈ [7.07 0.242 0.075]T . In this case, there are only 3

design variables so the algorithms exhibit similar convergence rate. For reference, the pressure

contours and streamlines for the initial and final designs are provided in Fig. 5.18.
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Figure 5.17: Convergence histories for Case II using objective function 2 (Sec. 5.1.2).
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Figure 5.18: Pressure contours and streamlines of the initial and optimized designs for Case II
using objective function 2 (Sec. 5.1.2).
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Provided in Table 5.7 are the optimized design variable and objective function values, as

well as overall costs of the optimization methods. Space mapping again reached the optimum

in much less time in comparison to the other methods, and found a better solution as well.

For reference, the final value of Nfeq with space mapping using 6 processors is 12.1, while

Table 5.7 shows a value of 18.7, which was obtained using 16 processors. Among the other

algorithms, kriging and SAO converge slightly faster than the pattern search method and

resulted in approximately the same optimum. Pattern search stopped at a slightly worse

solution than the others, and SAO failed to reach the objective function stopping criterion before

the maximum function calls was reached, in spite of its quick convergence in the beginning.

Convergence of kriging is somewhat unpredictable and depends on the initial sampling plan;

however, this disadvantage did not affect performance in this particular case.

Table 5.7: Summary of results for Case II using objective function 2 (Sec. 5.1.2) (stopping
criteria:

∣∣H(i) −H(i−1)∣∣ < 0.01 or Nf > 50). Nc and Nf are the number of low- and high-
fidelity function calls, while Nfeq is the number of equivalent high-fidelity function calls (in
terms of computation time).

PS SAO Kriging OSM (LF 1)

x0 [10 0.5 0.5]T [10 0.5 0.5]T - [10 0.5 0.5]T

x∗1 6.400 6.446 6.844 7.067

x∗2 0.2600 0.2575 0.2481 0.2422

x∗3 0.1250 0.0913 0.0841 0.0750

H -3.019 -3.048 -3.052 -3.053

CP 0.54828 0.54844 0.54846 0.54847

Nc - - - 94

Nf 43 50 30 7

Nfeq 43 50 30 18.7

tc (min) - - - 142.5

tf (min) 546.4 628.6 387.7 85.0

ttot (min) 546.4 628.6 387.7 227.5
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It is worth noting the discrepancy between this result (roughly 3% additional power) and

the results found by Sharma et al. [1]. The authors essentially used the same CFD model as this

thesis, but observed a power increase of 5-7% when varying the same design variables used in

Case II (R2 and ∆x). By in large, this is most likely due to meshing differences. In this thesis,

mesh dependence on computed power was studied extensively (which is necessary when using

variable-fidelity approaches), and in an effort to reduce this dependence, the block topology

was modified to allow for continuous cell width distributions across the block interfaces (i.e.,

the cell sizes on the boundaries of adjacent blocks were set equal to one another). Perhaps more

important is the overall refinement of the mesh which was done in this thesis; in the process of

mesh refinement, the computed value of the relative power increase tends to reduce in value.

Based on these results, then, this grid dependence (which is also observed in Ref. [30]) appears

to be a potential disadvantage of using the actuator disk model.

5.4 Case III: Optimizing R2, λ2, and ∆x, as well as the Blade Chord

Distribution

Cases I and II used predetermined radial distributions of the blade chord length and twist

angle. These distributions were found in a previous study using an inverse design approach

which tailored the shape to produce a desired pressure distribution. In Case III, the blade

chord distribution of the secondary rotor is added as a designable shape. To do this, the chord

distribution of the rotor blade is parameterized using b-spline curves [69]. Figure 5.19 shows

the baseline chord and twist distributions used in Cases I and II. In this figure, the red lines

show the baseline values used in the CFD model, while the solid black lines show b-spline

curves and are controlled using the control points shown. For this case, the vertical positions

of these b-spline control points are adjusted by the optimizer in order to obtain the best rotor

shape. The initial control point positions, including both horizontal and vertical coordinates,

were found by minimizing the L2 norm between both curves. Note, however, that only the

chord distribution (Fig. 5.19(a)) is optimized while the twist remains fixed.
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Figure 5.19: Baseline blade chord and twist distributions of the secondary rotor. The red
curves are the initial distributions while b-spline curves and control points are shown in black.
The chord distribution will be optimized, whereas the twist distribution will be kept fixed. The
control points of the chord distribution are allowed to move in the vertical direction, i.e., their
radial location is held fixed during the optimization.

Preliminary sensitivity analyses and optimization trials, which utilized the b-spline parame-

terization in Fig. 5.19, showed that in this case rotor chord distribution is much more influential

than twist angle. Therefore, the twist distribution in this design problem is disregarded, so the

design variable vector is then x = [λ2 R2 ∆x c1 ... c8]
T , where ci are the vertical locations of

chord control points in chord-radial distance space. The lower and upper bounds for these new

design variables are 0.001 and 0.2, respectively.

In this 11-parameter case, the design problem is solved using OSM as well as pattern search

for comparison. This decision to not use all methods was made due to the high expected

computational cost of the other methods. Also, in each iteration of OSM, the optimization

of the surrogate is driven by pattern search using the same initial grid sampling size. Thus,

comparison of OSM with pattern search rather than the other methods allows for more mean-

ingful results, as it shows how OSM (or in general, a multi-fidelity optimization framework) can

affect convergence, computational expense, and solution quality of a particular optimization

algorithm (in this case, pattern search). Regardless, for this case, only the newer approach to

the problem which utilizes a finer mesh and a relative objective function (Sec. 5.1.2) is used.
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When applying OSM to this case, two different low-fidelity models are utilized in order to

identify advantages and disadvantages of using a quicker but less accurate low-fidelity model.

Among these two models LF 1 and LF 2 (see Figs. 5.2 and 5.1), LF 1 is slower but models the

high-fidelity design space better. In theory, then, using LF 1 should produce a better quality

result while also being more computationally expensive.

5.4.1 Maximization of Relative Power Gain (Case III)

The convergence metrics for this case are presented in Fig. 5.20. When using OSM, the

stopping criteria are
∣∣H(i) −H(i−1)∣∣ < 0.001 or Nf > 20. Clearly, the use of LF 2 results in

a much faster solution, but also a slightly poorer quality of solution. This problem may be

multi-modal which could cause such a result. However, this discrepancy is most likely due to

the failure of LF 2 to adequately resolve the flow through the secondary rotor. It is worth

noting, however, that the use of LF 2 in Cases I and II led to very similar results as the use of

LF 1.
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Figure 5.20: Case III convergence histories using 16 processors for all models.
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Compared to OSM, the convergence of pattern search is very costly. When using this direct

method, a stopping criterion of
∣∣H(i) −H(i−1)∣∣ < 0.001 was first used, leading to an optimum

of H = −3.001 at Nfeq = 258. Because OSM led to a significantly better solution, and

because the convergence metric based on x indicated that the method may not be converged,

this method is restarted from the first optimum. For this second trial, the initial grid size is

reduced by a factor of 5, and the stopping criterion is changed to Nfeq > 500. In addition to

OSM convergence, Fig. 5.20 shows this entire optimization process using pattern search, with

the restart point shown as well. Clearly, restarting this algorithm led to a significantly better

design; unfortunately, however, it is still not clear whether the method has fully converged.

The final rotor chord distributions are presented in Figure 5.21. While using OSM with LF

1 resulted in a better design than OSM with LF 2, the two chord designs appear to be changing

in similar ways. With regard to the baseline shape, in both trials the optimized chord is thicker

at the root while the chord near the tip is thinner. Also, both trials resulted in an optimized

rotor radius close to the initial value of R2 = 0.5. Meanwhile, pattern search led to a shorter

rotor with a significantly different chord distribution. While the inner region of this shorter

rotor (r < 0.2) appears to be similar to that from OSM, the rotor shape lacks the relatively

flat region near the tip of the rotor. Ultimately, this leads to slightly worse performance as

computed by the CFD model.
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Figure 5.21: B-spline curves and control points of baseline and optimized chord distributions.
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Table 5.8 provides final objective function values, as well as final constraint function values,

number of function calls, and run time. Table 5.9 provides the final values of design variables.

OSM yields similar tip speed ratios found in Cases I and II, while rotor radii (R2 ≈ 0.5) differ

significantly from those found in Case II (R2 ≈ 0.25). Meanwhile, pattern search converged

to a significantly different design. Overall, the best objective function reached is -3.5%, which

corresponds to a computed power increase of 3.5% in comparison to the baseline design. The

pressure contours and streamlines of the initial and best designs are provided in Fig. 5.22.

Table 5.8: Summary of results for Case III (stopping criterion:
∣∣H(i) −H(i−1)∣∣ < 0.001): final

attributes.

OSM (LF 1) OSM (LF 2) PS

H -3.521 -3.441 -3.345

CP 0.55096 0.55054 0.55002

g -0.00120 -0.00466 -0.07602

Nc 1126 731 -

Nf 16 11 751

Nfeq 168.1 59.3 751.0

tc (min) 1,683.0 544.1 -

tf (min) 177.0 124.0 8,445.1

ttot (min) 1,860.0 668.2 8,445.1

Table 5.9: Summary of results for Case III (stopping criterion:
∣∣H(i) −H(i−1)∣∣ < 0.001): final

design variables. Here, x1 = λ2, x2 = R2, and x3 = ∆x, while xi(i = 4, ..., 11) = cj(j = 1, ..., 8)
are the chord design variables.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11
x0 10.00 0.500 0.500 0.0278 0.1111 0.1392 0.1118 0.0588 0.0374 0.0298 0.0142

SMa 5.20 0.491 0.057 0.0042 0.0079 0.1540 0.1966 0.0596 0.0042 0.0202 0.0039

SMb 5.20 0.515 0.061 0.0079 0.0912 0.1591 0.1914 0.0419 0.0175 0.0136 0.0093

PS 4.96 0.260 0.110 0.0039 0.1111 0.1392 0.1914 0.1225 0.0891 0.0099 0.0062

a LF 1
b LF 2
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(a) Initial (b) Optimized

Figure 5.22: Pressure contours and streamlines of the initial and final designs for Case III.

While the two OSM solutions are fairly similar, pattern search led to a completely different

design (smaller radius, different chord distribution). To investigate this, the design space

is sampled in a linear path between these two optima (which comprises a so-called alpha-

plot). Specifically, this additional analysis computes the objective function H(f(x)) for x =

αxPS + (1 − α)xOSM , where α is varied from 0 to 1 in 40 evenly spaced intervals while xOSM

and xPS are the two optimized design variable vectors. The results of this analysis are provided

in Fig. 5.23. In addition, the values of the nonlinear constraint function (defined in (5.2)) are

provided in Fig. 5.24.
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Figure 5.23: Results of design space sampling between the OSM and pattern search optima.
Note that α = 0 and α = 1 correspond to OSM and pattern search optima, respectively.
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Figure 5.24: Nonlinear constraint value between the OSM and pattern search optima.

When assessing only this single direction through the design space, there appears to be

multiple minima. This may explain why pattern search reached a significantly different de-

sign. However, the existence of multiple minima is hard to confirm, and would require further

investigations. An alternative explanation for this result is that pattern search is simply not

converged yet; due to design space nonlinearity, convergence may not be achievable without

many more function evaluations. Unfortunately, if this is the case, then the pattern search

method would require upwards of 10,000 minutes to reach full convergence.

In addition, this analysis introduces two concerns. Firstly, the model response is not smooth;

the cause of this is not well understood, but it is likely due to the CFD model’s use of airfoil

data lookup tables. Another concern is that pattern search failed to stop at the minimum at

approximately α = 0.9. Presumably, this level of convergence would be met if the algorithm

had been ran for a longer period of time. Regardless, this analysis provides some insight into

why pattern search struggles with this case. Also worth noting is the nonlinear constraint

values, which shows that the constraint is nearly active at the OSM optimum; this is due to

the large chord length at its root, small rotor separation, and relatively large secondary rotor

radius.
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5.5 Additional Investigations

Using the design space from Case III, two additional cases are investigated using the

variable-fidelity approach, with each investigation requiring multiple uses of OSM optimiza-

tion. For the first of these secondary analyses, the 11-parameter case is converted to eight

10-parameter cases, each at a specific secondary rotor radius R2 (i.e., x = [λ2 ∆x c1 ... c8]
T ).

Similarly, in the second of these analyses, eight 10-parameter designs are optimized, each at a

specific rotor separation ∆x (i.e., x = [λ2 R2 c1 ... c8]
T ). All of these cases use the same initial

design as the previous cases. This, in theory, yields the best possible scenario for each value

of these parameters. Doing so provides some insight into how influential these parameters are,

while the robustness of the optimization algorithm can be qualitatively assessed as well.

5.5.1 Optimal Designs for a Range of R2

For this case, eight evenly distributed values of secondary rotor radius are used as fixed

parameters. Provided in Fig. 5.25 are the final objective function values for this analysis. The

shape of this curve is quite flat between R2 = 0.2 and R2 = 0.6, and has a minimum value

near R2 = 0.45. While this figure does not show optimized blade geometries, the chord shapes

become progressively thinner at the blade tips as the radius is increased. As a result, for values

greater than R2 = 0.6, there is a sharp increase because the chord design variables reached

their lower bounds. For these designs, the objective function becomes approximately zero, thus

extracting power at the same rate as the main rotor in isolation.

Provided in Fig. 5.26 are the final tip speed ratios and rotor separations from this analysis.

While there is some numerical noise in the solution, the optimal tip speed ratio is approximately

5 for radius values of less than 0.6. For larger rotor radii, the tip speed ratio goes approximately

to zero. This indicates that the optimizer led to a single rotor design for these large blade

lengths. Also worth noting is the rotor separation. For radii of 0.6 or less, the separation

remains fixed at around 0.1 (i.e. one tenth of the main rotor radius). For greater values of

radius, the rotor separation tends towards 0.3, which is presumably a meaningless numerical

artifact.
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Figure 5.25: Final objective function for fixed radii.
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Figure 5.26: Final design variable values (excluding chord control points) for the fixed R2

investigation.
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5.5.2 Optimal Designs for a Range of ∆x

This case also uses eight values of the parameter, which is in this case rotor separation.

However, the points were not chosen to be evenly distributed because results in previous cases

indicate that small ∆x values tend to yield the highest performance (whereas optimal R2 values

have ranged from approximately 0.2 to 0.5). The resulting objective function values from this

analysis are provided in Fig. 5.27.

Provided in Fig. 5.28 are the final values of tip speed ratio and radius of the secondary rotor.

Compared to the previous investigation, the tip speed ratio remains approximately the same.

Meanwhile, the final radius values of the secondary rotor are highly discontinuous. Presumably,

this is due purely to numerical reasons and not due to the shape of the design space. However,

the complexity of the design space may also play a role.
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Figure 5.27: Final objective function for fixed rotor separation.
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Figure 5.28: Final design variable values (excluding chord control points) for the fixed ∆x
investigation.

5.5.3 Coarse Model Optimization

In this section, the low-fidelity models are used to solve Cases I, II, and III described

previously. The results are then compared to the results from the multi-fidelity approach (OSM)

as well as the other algorithms (pattern search, SAO, kriging with infill) which utilize the high-

fidelity mesh HF. The purpose of this comparison is to demonstrate that the simpler low-fidelity

approach is inherently cheaper, but can often result in a worse design when compared to OSM

(particularly in problems of high dimensionality).

5.5.3.1 Case I: Optimizing R2 and λ2

For Case I, all approaches except for the parametric sweep approach are compared to

pattern search using both low-fidelity models (LF 1 and LF 2). The results of this are provided

in Table 5.10. Note that when the table lists H for LF 1 and LF 2, the value is obtained by

running HF at the low-fidelity optimum; this is how the value Nf = 1 rather than Nf = 0

is introduced. For this simple two-parameter case, using the low-fidelity models in a direct

optimization algorithm led to approximately the same optimum as the other methods. In

addition, the use of these low-fidelity models led to much cheaper results.
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Table 5.10: Summary of results for Case I using objective function 2 (Sec. 5.1.2). In this case,
pattern search with low-fidelity models LF 1 and LF 2 are utilized.

PS (HF) SAO Kriging OSM (LF 1) PS (LF 1) PS (LF 2)

x0 [10 0.5]T [10 0.5]T - [10 0.5]T [10 0.5]T [10 0.5]T

x∗1 6.400 6.133 5.925 6.267 6.000 6.000

x∗2 0.1978 0.2125 0.2268 0.2067 0.2067 0.2067

H -2.322 -2.324 -2.302 -2.322 -2.316 -2.316

CP 0.54458 0.54459 0.54447 0.54458 0.54455 0.54455

Nc - - - 47 27 27

Nf 32 40 15 5 1 1

Nfeq 32 40 15 10.2 4.6 3.3

tc (min) - - - 69.6 39.4 20.1

tf (min) 435.8 535.6 202.2 66.9 12.8 12.8

ttot (min) 435.8 535.6 202.2 136.5 52.1 32.8

While OSM and pattern search led to very similar optima, the methods take different paths.

This may partly explain why pattern search leads to a different optimum in Case III (Sec. 5.4).

This result is illustrated in Fig. 5.29. These different paths are particularly interesting because

in each OSM iteration, the same pattern search algorithm is used to optimize the surrogate

model. One would expect, then, that both algorithms would take the same path but this does

not occur.

5.5.3.2 Case II: Optimizing R2, λ2, and ∆x

Case II using the low-fidelity models led to similar results as Case I. However, due to the

added dimension in the design space, results using LF 1 and LF 2 are no longer the same.

While the finer low-fidelity model LF 1 led to almost the same solution as the other methods,

LF 2 led to a significantly poorer solution. These results are provided in Table 5.11.
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Figure 5.29: Case I optimization paths using OSM (HF & LF 1) and pattern search (LF 1)
Note that the diamonds mark the optima found by the two methods.

Table 5.11: Summary of results for Case II using objective function 2 (Sec. 5.1.2). In this case,
pattern search with low-fidelity models LF 1 and LF 2 are utilized.

PS (HF) SAO Kriging OSM (LF 1) PS (LF 1) PS (LF 2)

x0 [10 0.5 0.5]T [10 0.5 0.5]T - [10 0.5 0.5]T [10 0.5 0.5]T [10 0.5 0.5]T

x∗1 6.400 6.446 6.844 7.067 6.400 6.400

x∗2 0.2600 0.2575 0.2481 0.2422 0.2867 0.3400

x∗3 0.1250 0.0913 0.0841 0.0750 0.0750 0.0500

H -3.019 -3.048 -3.052 -3.053 -3.035 -2.864

CP 0.54829 0.54844 0.54846 0.54847 0.54837 0.54746

Nc - - - 94 54 43

Nf 43 50 30 7 1 1

Nfeq 43 50 30 18.7 8.3 4.7

tc (min) - - - 142.5 75.9 33.8

tf (min) 546.4 628.6 387.7 85.0 10.4 10.3

ttot (min) 546.4 628.6 387.7 227.5 86.2 44.1
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5.5.3.3 Case III: Optimizing R2, λ2, and ∆x, as well as the Blade Chord Dis-

tribution

For Case III, the low- and high-fidelity pattern search optima are compared to the OSM

optima. Fig. 5.30 provides the final chord distributions using these models and optimization

methods. Provided in Table 5.12 is solution data from these methods. Surprisingly, pattern

search using the coarsest low-fidelity model yielded a better design than the high-fidelity pattern

search approach. On the other hand, pattern search using both HF and LF 1 led to similar,

lower-quality designs. Overall, while results using pattern search led to significantly different

designs depending on the mesh used, OSM in both cases located a similar type of design.

Thus, for this case, and when compared to pattern search, OSM appears to have the advantage

of consistency regardless of the low-fidelity model used. Note, however, that the stopping

criterion for all of these results is simply when
∣∣H(i) −H(i−1)∣∣ < 0.001. Results shown in

Sec. 5.4.1 showed that the high-fidelity pattern search approach can be restarted without this

criterion, leading to further convergence. Presumably, this would also occur for the pattern

search results using LF 1 or even LF 2.
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Figure 5.30: Baseline chord distribution versus optimized distributions using of high-, low-,
and multi-fidelity PS and OSM.
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Table 5.12: Summary of results for Case III using objective function 2 (Sec. 5.1.2). In this
case, pattern search with low-fidelity models LF 1 and LF 2 are utilized.

OSM (LF 1) OSM (LF 2) PS (HF) PS (LF 1) PS (LF 2)

x0 [10 0.5 0.5 c0]
T [10 0.5 0.5 c0]

T [10 0.5 0.5 c0]
T [10 0.5 0.5 c0]

T [10 0.5 0.5 c0]
T

x∗1 5.200 5.200 7.600 7.600 5.200

x∗2 0.4911 0.5148 0.1800 0.1800 0.4200

x∗3 0.0565 0.0611 0.1250 0.0500 0.1250

H -3.521 -3.441 -3.001 -2.921 -3.348

CP 0.55096 0.55054 0.54819 0.54777 0.55004

g -0.0012 -0.0047 -0.0760 -0.0035 -0.0680

Nc 1126 731 - 254 405

Nf 16 11 258 1 1

Nfeq 168.1 59.3 258.0 35.3 35.5

tc (min) 1,683.0 544.1 - 438.2 441.3

tf (min) 177.0 124.0 2,929.9 11.1 11.7

ttot (min) 1,860.0 668.2 2,929.9 449.3 453.0

5.6 Comparison of Methods

Throughout these optimization cases, the results indicate advantages and disadvantages of

each optimization method. A summary of these pros and cons are given in Table 5.13. Depend-

ing on the optimization problem (i.e., number of design variables or design space complexity)

and the desired outcome (e.g., exploration or quick optimization), any of these methods may be

logical to use. For example, the parametric sweep approach may be the best choice for inves-

tigating design trends in two design variables, while kriging could be used for this when more

design variables are considered (e.g. by using kriging model error as the infill criterion in order

to obtain a globally accurate approximation). Overall, for fast design optimization, the use of

OSM is recommend when possible. If no low-fidelity model is available, then SAO or kriging

may both be logical choices depending on factors such as the magnitude of numerical noise in

the CFD model or whether there are multiple minima in the design space. Meanwhile, while

pattern search is slower than the rest, in this work it is able to drive the OSM algorithm with

reasonable efficiency (which it does by optimizing the space mapping surrogate each iteration).
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Table 5.13: Advantages and disadvantages of the optimization techniques.

Optimization

approach

Pros Cons

Parametric sweep • Shows design trends • Expensive
• May not find optimum

Pattern search • Handles numerical noise well • Converges slowly

Kriging • Global search
• May quickly approach

optimum

• Unreliable convergence due

to numerical noise and design

space nonlinearity

SAO • Handles numerical noise well
• May quickly approach

optimum

• Slowly reaches objective

function stopping criterion

OSM • Fast convergence
• Can handle higher number of

design variables

• Less versatile than others

(requires low-fidelity model)
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CHAPTER 6. CONCLUSION

Design approaches using computationally expensive computational fluid dynamics (CFD)

simulations for dual-rotor wind turbines (DRWTs) have been demonstrated and investigated.

In particular, the traditional parametric sweep, direct optimization, and surrogate-based opti-

mization (SBO) were considered. The design space of the DRWTs is multi-modal but still fairly

smooth. A data-driven surrogate model captures the main features of the design space and can

be constructed using fewer evaluations of the CFD model when compared to the parametric

sweep and the direct optimization approaches. Both of these data-driven methods, kriging and

sequential approximation optimization (SAO), seem well suited for the problem although they

both have advantages and disadvantages.

In addition, variable-fidelity design optimization of DRWTs using multi-point output space

mapping (OSM) has been demonstrated. The approach constructs a fast yet reliable surrogate

model of the DRWT using a coarse mesh CFD model and a correction based on high-fidelity

model data. The algorithm uses only one high-fidelity model evaluation per design iteration.

The approach is applied to design cases with low-dimensional and medium-dimensional sized

design spaces. In the low dimensional cases, the space mapping approach proved to be by far

the fastest, and resulted in similar or better solutions when compared to the other methods.

The method also worked well in the medium-dimensional case, where it vastly outperformed

pattern search, with the total cost being much less than the predicted costs of Kriging with

infill and SAO.

In the medium-dimensional case, chord distribution of the secondary rotor led to further

improvement of the DRWT design compared to the low-dimensional cases. The final increase

in power capture computed by the model is modest, but because the model neglects important

physics, the magnitude is not expected to be an exact replica of realistic wind turbine perfor-
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mance. Instead, the optimization results are intended to potentially highlight the dominant

trends in the design space that may be present when using high-fidelity CFD simulations or

experimental testing. Furthermore, the geometry of only the secondary rotor was modified in

this study, while the main rotor operated approximately at its optimal tip speed ratio. When

computed for lower wind speeds, different inflow velocity distributions, or higher turbulent

intensity, the DRWT would see significantly higher performance gains compared to the main

rotor operating in isolation. In addition, previous works suggest that such a design would also

have a lower cut-in wind speed. When taking into account these other factors, the improvement

in power capture would likely coincide better with works described in Chapter 2.

Overall, this thesis observed a 3.5% increase in power relative to the main rotor operating

in isolation. This improvement is less than the theoretical value found by Newman [3], who

showed that the maximum attainable power extraction by a DRWT is 8% greater than that

of a SRWT. This analysis is not directly comparable to the current study, however. This is

because the present work takes fluid rotation into account through the use of BEM theory, while

Newman’s analysis is based solely on actuator disk theory, therefore neglecting this additional

component of fluid velocity. Furthermore, the author noted that when validating the theory

using a wind tunnel, this analytical result begins to break down for actuator disk separation

values of less than one disk diameter.

In the future work, several aspects will be considered. Firstly, Case III will be repeated us-

ing different initial design points. Doing so may help pattern search lead to the global optimum

rather than a local minimum; this will also help assess the robustness of the OSM algorithm.

Secondly, Case III will be repeated using an alternative physics-based SBO method. In partic-

ular, input space mapping (ISM) or multi-level optimization [64, 65] will be investigated.

Additional future work will investigate a different objective function as well as a further

expanded design space. Previous work indicates that DRWTs yield better wake mixing down-

stream of the rotors, which leads to improved performance of wind turbines directly down-

stream. Thus, the alternative objective function will quantify downstream mixing; optimizing

such a metric may lead to significantly different design compared to the cases in this work.

Finally, the design space will be expanded to include the geometry of both rotors, rather than
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only the smaller, upstream one. Although this case would be significantly more expensive,

OSM would handle it in a reasonable amount of time. This case is expected to yield large

improvements in performance because the parameterization would provide much greater flexi-

bility.
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APPENDIX A. SECONDARY INVESTIGATIONS

The purpose of this chapter is to provide information or results which supplement the main

findings in Chapter 5. In particular, the power coefficient contours will be provided for the

initial and optimal rotor geometries.

A.1 Parametric Sweep of the Optimized Rotor

Following the parametric sweep approach shown in Sec. 5.2.1, this brief section provides

the power coefficient contours for a rotor separation of 0.5 using the fine mesh (HF). However,

this time two rotor geometries are used: the initial chord distribution used in Cases I and II,

and the best chord distribution found in Case III (see Sec. 5.4). The results of this analysis are

provided in Figs. A.1 and A.2 for the baseline and optimized geometries, respectively.
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Figure A.1: Power contours of the initial rotor geometry for ∆x = 0.5.
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Figure A.2: Power contours of the optimized rotor geometry for ∆x = 0.5.
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